LINK:5.15 T2





个人感觉生成函数更无脑 容斥也好推的样子.

容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数.

容易得到转移 使用前缀和优化即可。

进一步的可以设出其生成函数 对于第i次放数字 生成函数为\(F(x)=1+x^1+x^2+...x^{n-i}\)

那么容易得到答案的生成函数为 \(G(x)=\frac{\Pi_{i=1}^{n}(1-x^i)}{(1-x)^n}\)

化简一下 然后dp出来方案数即可 可以发现这个dp是\(k\sqrt n\)

当然也可以容斥 可以发现 其实每个数字都有范围[0,i-1]

我们想要求出 \(g_1+g_2+...g_n=k\)这个等式的解的个数。

此时隔板法可以求出 方程的解 不过不一定满足 范围。

考虑 容斥 总方案-一个不合法+两个不合法-三个不合法...

容易想到 第i个数字不合法当且仅当其值>=i时不合法 那么利用代表元 就很容易统计其不合法方案.

这样问题变成了 求出 f[i][j]表示i个数字和为j的方案数.

显然这i个数字每个都不相同 那么第一维是一个根号的状态.

所以 转移也很简单 不过值得注意的是需要减掉某个数字>n的方案.

这个在第一次越过的时候减掉即可。

两种方案 殊途同归 写法一模一样.

const ll MAXN=100010;
ll n,k,maxx;
ll f[600][MAXN];
ll fac[MAXN<<1],inv[MAXN<<1];
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline void prepare()
{
fac[0]=1;
rep(1,maxx,i)fac[i]=fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
}
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
signed main()
{
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
get(n);get(k);
maxx=n+k;prepare();
ll ww=(ll)sqrt(k*2*1.0)+1;
f[0][0]=1;
rep(1,ww,i)
{
rep(1,k,j)
{
if(j>=i)f[i][j]=(f[i][j-i]+f[i-1][j-i])%mod;
if(j>n)f[i][j]=(f[i][j]-f[i-1][j-n-1])%mod;
}
}
ll ans=0;
rep(0,ww,i)
{
rep(0,k,j)
{
if(i&1)ans=(ans-f[i][j]*C(k-j+n-1,n-1))%mod;
else ans=(ans+f[i][j]*C(k-j+n-1,n-1))%mod;
}
}
putl(M(ans));
return 0;
}

5.15 省选模拟赛 容斥 生成函数 dp的更多相关文章

  1. 6.15 省选模拟赛 老魔杖 博弈论 SG函数

    这道题确实没有一个很好的解决办法 唯一的正解可能就是打表找规律 或者 直接猜结论了吧. 尽管如此 在此也给最终结论一个完整的证明. 对于70分 容易发现状态数量不大 可以进行暴力dp求SG函数. 原本 ...

  2. 5.15 省选模拟赛 T1 点分治 FFT

    LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下 ...

  3. 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat

    好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...

  4. 省选模拟赛 4.26 T1 dp 线段树优化dp

    LINK:T1 算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了. 容易发现一个性质 那就是同一格子不会被两种以上的颜色染.(颜色就三种. 通过这个性质就可以进行dp了.先按照左端点排序 ...

  5. 5.29 省选模拟赛 树的染色 dp 最优性优化

    LINK:树的染色 考场上以为这道题要爆蛋了 没想到 推出正解来了. 反正是先写了爆搜的 爆搜最近越写越熟练了 容易想到dp 容易设出状态 f[i][j]表示以i为根的子树内白色的值为j此时黑色的值怎 ...

  6. 4.26 省选模拟赛 T3 状压dp 差分求答案

    LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想 ...

  7. 4.9 省选模拟赛 圆圈游戏 树形dp set优化建图

    由于圆不存在相交的关系 所以包容关系形成了树的形态 其实是一个森林 不过加一个0点 就变成了树. 考虑对于每个圆都求出最近的包容它的点 即他的父亲.然后树形dp即可.暴力建图n^2. const in ...

  8. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  9. 浅析容斥和DP综合运用

    浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...

随机推荐

  1. HTML文档解析和DOM树的构建

    浏览器解析HTML文档生成DOM树的过程,以下是一段HTML代码,以此为例来分析解析HTML文档的原理 <!DOCTYPE html> <html lang="en&quo ...

  2. 如何修复 WordPress 中的 HTTP 错误

    如何修复我们会向你介绍,如何在 Linux VPS 上修复 WordPress 中的 HTTP 错误. 下面列出了 WordPress 用户遇到的最常见的 HTTP 错误,我们的建议侧重于如何发现错误 ...

  3. 「期望」「洛谷P1297」单选错位

    题目 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,-,ai,每个 ...

  4. Python-利用xlrd模块操作excel

    在工作中,无论是数据分析,还是批量导入数据,都会去操作excel,当然,数据分析有数据分析的方法,而我在开发中涉及到的是批量导入excel中的数据, 接下来介绍下如何利用python的xlrd模块来读 ...

  5. (三)学习了解OrchardCore笔记——灵魂中间件ModularTenantContainerMiddleware的第一行①的模块部分

    了解到了OrchardCore主要由两个中间件(ModularTenantContainerMiddleware和ModularTenantRouterMiddleware)构成,下面开始了解Modu ...

  6. www.215wd.com

    www.215wd.com 传奇销售系统 QQ:1479528000

  7. requests接口自动化7-Multi/form-data文件上传形式的post请求:files

    Multi/form-data文件上传形式的post请求:用files传参 fiddler里请求响应内容; 代码: import requests from requests_toolbelt imp ...

  8. 数据可视化之powerBI技巧(二十一)简单三个步骤,轻松管理你的Power BI度量值

    最近碰到几个星友的问题,都是问我之前分享的源文件是如何把度量值分门别类放到不同的文件夹中的,就像这样, 其实在之前的文章中也曾提及过做法,这里再详细说一下制作步骤: 01 | 新建一个空表 点击菜单栏 ...

  9. 数据可视化之DAX篇(五) 使用PowerBI的这两个函数,灵活计算各种占比

    https://zhuanlan.zhihu.com/p/57861350 计算个体占总体的比例是一个很常见的分析方式,它很简单,就是两个数字相除,但是当需要计算的维度.总体的范围发生动态变化时,如何 ...

  10. 开源利器分享:BitBar 坐看今天你的项目涨了多少 star

    今天开头我想叨叨几句,我个人最近的感受.在这个信息爆炸,互联网的时代里.我的周遭总是充斥者着各种让人能产生焦虑的信息, 我不知道有没有小伙伴和我一样,看到各种神通广大.游戏人生的大侠,低头看看自己当前 ...