Hudi特性

  • 数据湖处理非结构化数据、日志数据、结构化数据

  • 支持较快upsert/delete, 可插入索引

  • Table Schema

  • 小文件管理Compaction

  • ACID语义保证,多版本保证 并具有回滚功能

  • savepoint 用户数据恢复的保存点

  • 支持多种分析引擎 spark、hive、presto

编译Hudi

git clone https://github.com/apache/hudi.git && cd hudi

mvn clean package -DskipTests

hudi 高度耦合spark

执行spark-shell测试Hudi

bin/spark-shell  --packages org.apache.spark:spark-avro_2.11:2.4.5   --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' --jars /Users/macwei/IdeaProjects/hudi-master/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.6.1-SNAPSHOT.jar

hudi 写入数据

// spark-shell
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._ val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator // spark-shell
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

读取hudi数据:

  val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath + "/*/*/*/*") tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot") spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show() +------------------+-------------------+-------------------+-------------+
| fare| begin_lon| begin_lat| ts|
+------------------+-------------------+-------------------+-------------+
| 64.27696295884016| 0.4923479652912024| 0.5731835407930634|1609771934700|
| 93.56018115236618|0.14285051259466197|0.21624150367601136|1610087553306|
| 33.92216483948643| 0.9694586417848392| 0.1856488085068272|1609982888463|
| 27.79478688582596| 0.6273212202489661|0.11488393157088261|1610187369637|
|34.158284716382845|0.46157858450465483| 0.4726905879569653|1610017361855|
| 43.4923811219014| 0.8779402295427752| 0.6100070562136587|1609795685223|
| 66.62084366450246|0.03844104444445928| 0.0750588760043035|1609923236735|
| 41.06290929046368| 0.8192868687714224| 0.651058505660742|1609838517703|
+------------------+-------------------+-------------------+-------------+ spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from hudi_trips_snapshot").show() +-------------------+--------------------+----------------------+---------+----------+------------------+
|_hoodie_commit_time| _hoodie_record_key|_hoodie_partition_path| rider| driver| fare|
+-------------------+--------------------+----------------------+---------+----------+------------------+
| 20210110225218|3c7ef0e7-86fb-444...| americas/united_s...|rider-213|driver-213| 64.27696295884016|
| 20210110225218|222db9ca-018b-46e...| americas/united_s...|rider-213|driver-213| 93.56018115236618|
| 20210110225218|3fc72d76-f903-4ca...| americas/united_s...|rider-213|driver-213|19.179139106643607|
| 20210110225218|512b0741-e54d-426...| americas/united_s...|rider-213|driver-213| 33.92216483948643|
| 20210110225218|ace81918-0e79-41a...| americas/united_s...|rider-213|driver-213| 27.79478688582596|
| 20210110225218|c76f82a1-d964-4db...| americas/brazil/s...|rider-213|driver-213|34.158284716382845|
| 20210110225218|73145bfc-bcb2-424...| americas/brazil/s...|rider-213|driver-213| 43.4923811219014|
| 20210110225218|9e0b1d58-a1c4-47f...| americas/brazil/s...|rider-213|driver-213| 66.62084366450246|
| 20210110225218|b8fccca1-9c28-444...| asia/india/chennai|rider-213|driver-213|17.851135255091155|
| 20210110225218|6144be56-cef9-43c...| asia/india/chennai|rider-213|driver-213| 41.06290929046368|
+-------------------+--------------------+----------------------+---------+----------+------------------+

对比

数据导入至hadoop方案: maxwell、canal、flume、sqoop

hudi是通用方案

  • hudi 支持presto、spark sql下游查询

  • hudi存储依赖hdfs

  • hudi可以当作数据源或数据库,支持PB级别

概念

Timeline: 时间戳

state:即时状态

原子写入操作

compaction: 后台协调hudi中差异数据

rollback: 回滚

savepoint: 数据还原

任何操作都有以下状态:

  • Requested 已安排操作行为,但是没有开始
  • Inflight 正在执行当前操作
  • Completed 已完成操作

hudi提供两种表类型:

  • CopyOnWrite 适用全量数据,列式存储,写入过程执行同步合并重写文件
  • MergeOnRead 增量数据,基于列式(parquet)和行式(avro)存储,更新记录到增量文件(日志文件),压缩同步和异步生成新版本文件,延迟更低

hudi查询类型:

  • 快照查询 查询最新快照表数据,如果是MergeOnRead表,动态合并最新版本基本数据和增量数据用于显示查询;如果是CopyOnWrite,直接查询Parquet表,同时提供upsert、delete操作
  • 增量查询 只能看到写入表的新数据
  • 优化读查询 给定时间段的一个查询

资料参考

数据湖-Apache Hudi的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. 基于Apache Hudi构建分析型数据湖

    为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特 ...

  3. Apache Hudi助力nClouds加速数据交付

    1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一 ...

  4. 官宣!ASF官方正式宣布Apache Hudi成为顶级项目

    马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apac ...

  5. Apache Hudi和Presto的前世今生

    一篇由Apache Hudi PMC Bhavani Sudha Saktheeswaran和AWS Presto团队工程师Brandon Scheller分享Apache Hudi和Presto集成 ...

  6. 划重点!AWS的湖仓一体使用哪种数据湖格式进行衔接?

    此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift查询Hudi表,现在它终于来了. 现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apa ...

  7. Halodoc使用 Apache Hudi 构建 Lakehouse的关键经验

    Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehou ...

  8. 使用 Apache Hudi 实现 SCD-2(渐变维度)

    数据是当今分析世界的宝贵资产. 在向最终用户提供数据时,跟踪数据在一段时间内的变化非常重要. 渐变维度 (SCD) 是随时间推移存储和管理当前和历史数据的维度. 在 SCD 的类型中,我们将特别关注类 ...

  9. 华为云 MRS 基于 Apache Hudi 极致查询优化的探索实践

    背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 Fusio ...

随机推荐

  1. intellij IDEA Mybatis入门案例

    最近打算学习ssm框架  Mybatis 作为入门的第一个持久层框架,学习起来实在费劲.故写此文章作为入门案例. 先打开 IDEA建立一个Maven项目,目录结构如下: 源代码已经上传至GitHub ...

  2. YourBatman 2020年感悟关键词:科比、裁员、管理层、活着

    目录 本文提纲 ✍前言 版本约定 ✍正文 科比 裁员 如何避免被裁? 1.不要迷恋管理,一味追求"当官" 2.别以为裁员只裁一线,不裁管理层 3.即使步入管理,建议不要脱离技术 4 ...

  3. Linux 网络排错检查思路

    Linux 网络排错检查思路 graph TD A[当网络不通时] --> B{ping想要访问的地址,<br>如www.runoob.com} B --> |不通| C{pi ...

  4. express框架路由未导出错误:Router.use() requires a middleware function but got a Object

    在路由的文件下加入导出语句 module.exports = router   导入与导出需要一一对应  

  5. 微信小程序 更新版本操作

    1.小程序的启动方式: 冷启动----小程序首次打开或销毁后再次被打开 热启动----小程序打开后,在一段时间内(目前:5分钟)再次被打开,此时会将后台的小程序切换到前台. 2.根据以上两种启动方式, ...

  6. JavaScript正则表达式详解

    在JavaScript中,正则表达式由RegExp对象表示.RegExp对象呢,又可以通过直接量和构造函数RegExp两种方式创建,分别如下: //直接量 var re = /pattern/[g | ...

  7. Solon rpc 之 SocketD 协议

    1. 简介 SocketD 是一种二进制的点对点通信协议,是一种新的网络通信第七层协议.旨在用于分布式应用程序中.从这个意义上讲,SocketD可以是RSocket等其他类似协议的替代方案.它的消息协 ...

  8. 【SpringBoot1.x】SpringBoot1.x 配置

    SpringBoot1.x 配置 文章源码 配置文件 SpringBoot 使用一个全局的配置文件,配置文件名是固定的. application.properties.application.yml都 ...

  9. 【C++】《C++ Primer 》第八章

    第八章 IO库 一.IO类 1. 标准库定义的IO类型 头文件 作用 类型 iostream 从标准流中读写数据 istream, wistream 从流读取数据 ostream, wostream ...

  10. 【Flutter】容器类组件之变换

    前言 Transform可以在其子组件绘制时对其应用一些矩阵变换来实现一些特效. 接口描述 const Transform({ Key key, @required this.transform, t ...