Hudi特性

  • 数据湖处理非结构化数据、日志数据、结构化数据

  • 支持较快upsert/delete, 可插入索引

  • Table Schema

  • 小文件管理Compaction

  • ACID语义保证,多版本保证 并具有回滚功能

  • savepoint 用户数据恢复的保存点

  • 支持多种分析引擎 spark、hive、presto

编译Hudi

git clone https://github.com/apache/hudi.git && cd hudi

mvn clean package -DskipTests

hudi 高度耦合spark

执行spark-shell测试Hudi

bin/spark-shell  --packages org.apache.spark:spark-avro_2.11:2.4.5   --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' --jars /Users/macwei/IdeaProjects/hudi-master/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.6.1-SNAPSHOT.jar

hudi 写入数据

// spark-shell
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._ val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator // spark-shell
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

读取hudi数据:

  val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath + "/*/*/*/*") tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot") spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show() +------------------+-------------------+-------------------+-------------+
| fare| begin_lon| begin_lat| ts|
+------------------+-------------------+-------------------+-------------+
| 64.27696295884016| 0.4923479652912024| 0.5731835407930634|1609771934700|
| 93.56018115236618|0.14285051259466197|0.21624150367601136|1610087553306|
| 33.92216483948643| 0.9694586417848392| 0.1856488085068272|1609982888463|
| 27.79478688582596| 0.6273212202489661|0.11488393157088261|1610187369637|
|34.158284716382845|0.46157858450465483| 0.4726905879569653|1610017361855|
| 43.4923811219014| 0.8779402295427752| 0.6100070562136587|1609795685223|
| 66.62084366450246|0.03844104444445928| 0.0750588760043035|1609923236735|
| 41.06290929046368| 0.8192868687714224| 0.651058505660742|1609838517703|
+------------------+-------------------+-------------------+-------------+ spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from hudi_trips_snapshot").show() +-------------------+--------------------+----------------------+---------+----------+------------------+
|_hoodie_commit_time| _hoodie_record_key|_hoodie_partition_path| rider| driver| fare|
+-------------------+--------------------+----------------------+---------+----------+------------------+
| 20210110225218|3c7ef0e7-86fb-444...| americas/united_s...|rider-213|driver-213| 64.27696295884016|
| 20210110225218|222db9ca-018b-46e...| americas/united_s...|rider-213|driver-213| 93.56018115236618|
| 20210110225218|3fc72d76-f903-4ca...| americas/united_s...|rider-213|driver-213|19.179139106643607|
| 20210110225218|512b0741-e54d-426...| americas/united_s...|rider-213|driver-213| 33.92216483948643|
| 20210110225218|ace81918-0e79-41a...| americas/united_s...|rider-213|driver-213| 27.79478688582596|
| 20210110225218|c76f82a1-d964-4db...| americas/brazil/s...|rider-213|driver-213|34.158284716382845|
| 20210110225218|73145bfc-bcb2-424...| americas/brazil/s...|rider-213|driver-213| 43.4923811219014|
| 20210110225218|9e0b1d58-a1c4-47f...| americas/brazil/s...|rider-213|driver-213| 66.62084366450246|
| 20210110225218|b8fccca1-9c28-444...| asia/india/chennai|rider-213|driver-213|17.851135255091155|
| 20210110225218|6144be56-cef9-43c...| asia/india/chennai|rider-213|driver-213| 41.06290929046368|
+-------------------+--------------------+----------------------+---------+----------+------------------+

对比

数据导入至hadoop方案: maxwell、canal、flume、sqoop

hudi是通用方案

  • hudi 支持presto、spark sql下游查询

  • hudi存储依赖hdfs

  • hudi可以当作数据源或数据库,支持PB级别

概念

Timeline: 时间戳

state:即时状态

原子写入操作

compaction: 后台协调hudi中差异数据

rollback: 回滚

savepoint: 数据还原

任何操作都有以下状态:

  • Requested 已安排操作行为,但是没有开始
  • Inflight 正在执行当前操作
  • Completed 已完成操作

hudi提供两种表类型:

  • CopyOnWrite 适用全量数据,列式存储,写入过程执行同步合并重写文件
  • MergeOnRead 增量数据,基于列式(parquet)和行式(avro)存储,更新记录到增量文件(日志文件),压缩同步和异步生成新版本文件,延迟更低

hudi查询类型:

  • 快照查询 查询最新快照表数据,如果是MergeOnRead表,动态合并最新版本基本数据和增量数据用于显示查询;如果是CopyOnWrite,直接查询Parquet表,同时提供upsert、delete操作
  • 增量查询 只能看到写入表的新数据
  • 优化读查询 给定时间段的一个查询

资料参考

数据湖-Apache Hudi的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. 基于Apache Hudi构建分析型数据湖

    为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特 ...

  3. Apache Hudi助力nClouds加速数据交付

    1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一 ...

  4. 官宣!ASF官方正式宣布Apache Hudi成为顶级项目

    马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apac ...

  5. Apache Hudi和Presto的前世今生

    一篇由Apache Hudi PMC Bhavani Sudha Saktheeswaran和AWS Presto团队工程师Brandon Scheller分享Apache Hudi和Presto集成 ...

  6. 划重点!AWS的湖仓一体使用哪种数据湖格式进行衔接?

    此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift查询Hudi表,现在它终于来了. 现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apa ...

  7. Halodoc使用 Apache Hudi 构建 Lakehouse的关键经验

    Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehou ...

  8. 使用 Apache Hudi 实现 SCD-2(渐变维度)

    数据是当今分析世界的宝贵资产. 在向最终用户提供数据时,跟踪数据在一段时间内的变化非常重要. 渐变维度 (SCD) 是随时间推移存储和管理当前和历史数据的维度. 在 SCD 的类型中,我们将特别关注类 ...

  9. 华为云 MRS 基于 Apache Hudi 极致查询优化的探索实践

    背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 Fusio ...

随机推荐

  1. Docker - 配置加速器

    https://www.daocloud.io/mirror#accelerator-doc curl -sSL https://get.daocloud.io/daotools/set_mirror ...

  2. [leetcode]BestTimetoBuyandSellStock买卖股票系列问题

    问题1: If you were only permitted to complete at most one transaction (ie, buy one and sell one share ...

  3. Centos7 编译安装PHP7.2

    yum install wget 在 /usr/local/src 目录下载php源码包 wget http://cn2.php.net/distributions/php-7.2.4.tar.gz ...

  4. Interface注意事项

    Interface 成员声明 声明属性,默认static & final 声明方法,默认public interface Instrument { int VALUE = 5; // stat ...

  5. java使用正则的例子

    package com.accord.util; import java.util.ArrayList; import java.util.List; import java.util.regex.M ...

  6. llinux文件相关指令

    一---导读 首先我们来看这样一个小案例,假设张三要出差,按照 这样的路线进行 北京->上海,之后回到北京.再按照北京->天津->石家庄这样的路线进行出差(北京是根据地).假设现在张 ...

  7. 小米11和iphone12参数对比哪个好

    小米11:搭载最新一代三星的AMOLED屏幕,120Hz屏幕刷新,iPhone12使用全新一代的视网膜屏,6.1英寸屏幕,支持60Hz屏幕刷新,支持HDR显示,P3广色域小米手机爆降800 优惠力度空 ...

  8. 【SpringBoot1.x】SpringBoot1.x 开发热部署和监控管理

    SpringBoot1.x 开发热部署和监控管理 热部署 在开发中我们修改一个 Java 文件后想看到效果不得不重启应用,这导致大量时间花费,我们希望不重启应用的情况下,程序可以自动部署(热部署). ...

  9. .net core 和 WPF 开发升讯威在线客服与营销系统:使用 WebSocket 实现访客端通信

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...

  10. 初识JWT

    1.JWT是什么 官方网站 JWT是JSON Web Token的简称.是一种开放标准(RFC 7519),定义了一种紧凑且自包含的方式,以JSON对象的形式在各方之间安全地传输信息,因为他被数字签名 ...