题意:有T组数据,N个点,M条边,每条边有一定的花费。问最小生成树和次小生成树的权值。

解法:具体请见 关于生成树的拓展 {附【转】最小瓶颈路与次小生成树}(图论--生成树)

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7
8 const int N=105,M=5005,C=305;
9 int n,m,mm;
10 struct edge
11 {
12 int x,y,d,next;
13 edge() {}
14 edge(int i,int j,int k) {x=i;y=j;d=k;}
15 }e[M],ee[M];
16 int fa[N],last[N],vis[N];
17 int ve[M],f[N][N];
18
19 bool cmp(edge x,edge y) {return x.d<y.d;}
20 int mmax(int x,int y) {return x>y?x:y;}
21 int mmin(int x,int y) {return x<y?x:y;}
22
23 int ffind(int x)
24 {
25 if (fa[x]!=x) fa[x]=ffind(fa[x]);
26 return fa[x];
27 }
28 int MST()
29 {
30 int cnt=0,sum=0;
31 for (int i=1;i<=n;i++) fa[i]=i;
32 memset(ve,0,sizeof(ve));
33 sort(e+1,e+1+m,cmp);
34 for (int i=1;i<=m;i++)
35 {
36 int fx=ffind(e[i].x),fy=ffind(e[i].y);
37 if (fx!=fy)
38 {
39 fa[fx]=fy,ve[i]=1;
40 ee[++cnt]=e[i],sum+=e[i].d;
41 if (cnt==n-1) break;
42 }
43 }
44 mm=cnt;
45 return sum;
46 }
47 void build()
48 {
49 memset(last,0,sizeof(last));
50 for (int i=1;i<n;i++)
51 {
52 int x=ee[i].x,y=ee[i].y;
53 ee[i].next=last[x],last[x]=i;
54 ee[++mm]=edge(y,x,ee[i].d);
55 ee[mm].next=last[y],last[y]=mm;
56 }
57 }
58 void dfs(int x)
59 {
60 vis[x]=1;
61 for (int i=last[x];i;i=ee[i].next)
62 {
63 int y=ee[i].y;
64 if (vis[y]) continue;
65 for (int k=1;k<=n;k++)
66 if (vis[k]) f[k][y]=f[y][k]=mmax(f[k][x],ee[i].d);//要赋值2个f[][]
67 dfs(y);
68 }
69 }
70 int main()
71 {
72 int T;
73 scanf("%d",&T);
74 while (T--)
75 {
76 int x,y,d;
77 scanf("%d%d",&n,&m);
78 for (int i=1;i<=m;i++)
79 {
80 scanf("%d%d%d",&x,&y,&d);
81 e[i]=edge(x,y,d);
82 }
83 int mn=MST(),mmn=C*M;
84 build();//把最小生成树的边重新建树
85 memset(f,0,sizeof(f));
86 memset(vis,0,sizeof(vis));
87 dfs(1);//预处理f[x][y]:两点间路径的最大边权
88 for (int i=1;i<=m;i++)
89 {
90 if (ve[i]) continue;
91 mmn=mmin(mmn,mn-f[e[i].x][e[i].y]+e[i].d);//直接算出删除MST上的一条边时的MST,即次小生成树
92 }
93 printf("%d %d\n",mn,mmn);
94 }
95 return 0;
96 }

【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)的更多相关文章

  1. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树

    题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...

  2. UVA10600:ACM Contest and Blackout(次小生成树)

    ACM Contest and Blackout 题目链接:https://vjudge.net/problem/UVA-10600 Description: In order to prepare ...

  3. UVA 10600 ACM Contest and Blackout 次小生成树

    又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...

  4. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  5. UVA-10600 ACM Contest and Blackout (次小生成树)

    题目大意:给一张无向图,找出最小生成树和次小生成树. 题目分析:模板题...方法就是枚举所有的比最小生成树中两端点之间的最长边还要长的边,用它替换,再取一个最小的值便是次小生成树了. 代码如下: # ...

  6. UVA-10600.Contest and Blackout.(Kruskal + 次小生成树)

    题目链接 本题思路:模版的次小生成树问题,输出MST and Second_MST的值. 参考代码: #include <cstdio> #include <cstring> ...

  7. UVA10600 ACM Contest and Blackout —— 次小生成树

    题目链接:https://vjudge.net/problem/UVA-10600 In order to prepare the “The First National ACM School Con ...

  8. 【uva 534】Frogger(图论--最小瓶颈路 模版题)

    题意:平面上有N个石头,给出坐标.一只青蛙从1号石头跳到2号石头,使路径上的最长便最短.输出这个值.(2≤N≤200) 解法:最小瓶颈树.而由于这题N比较小便可以用2种方法:1.最短路径中提到过的Fl ...

  9. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

随机推荐

  1. 【Flutter】容器类组件之变换

    前言 Transform可以在其子组件绘制时对其应用一些矩阵变换来实现一些特效. 接口描述 const Transform({ Key key, @required this.transform, t ...

  2. 行业动态 | 利用Cassandra数据库揭开家族祖先的秘密

        FamilySearch选择了基于Apache Cassandra的DataStax Enterprise (DSE)来加速用户增长,并通过更快的反应时间.高可用性以及零数据库宕机来提供强大的 ...

  3. C# 合并和拆分PDF文件

    一.合并和拆分PDF文件的方式 PDF文件使用了工业标准的压缩算法,易于传输与储存.它还是页独立的,一个PDF文件包含一个或多个"页",可以单独处理各页,特别适合多处理器系统的工作 ...

  4. BINARY SEARCH 的一点说明

    在sap 之abap语言中,有‍BINARY SEARCH这个查找条件.使用read table 来读取内表时,使用‍BINARY SEARCH可以大大的提高查找的效率,为什么呢?学过数据库的人会知道 ...

  5. [Cerc2005]Knights of the Round Table

    题目描述 有n个骑士经常举行圆桌会议,商讨大事.每次圆桌会议至少有3个骑士参加,且相互憎恨的骑士不能坐在圆桌的相邻位置.如果发生意见分歧,则需要举手表决,因此参加会议的骑士数目必须是大于1的奇数,以防 ...

  6. STM32驱动LCD实战

    前段时间写了<STM32驱动LCD原理>和<STM32的FSMC外设简介>两篇文章,本文将对STM32驱动LCD进行实战应用.LCD是深圳市拓普微科技开发有限公司的LMT028 ...

  7. Docker容器日志清理方案

    Docker容器在运行过程中会产生很多日志,久而久之,磁盘空间就被占满了,以下分享docker容器日志清理的几种方法 删除日志 在linux上,容器日志一般存放在 /var/lib/docker/co ...

  8. Kubernetes调整Node节点快速驱逐pod的时间

    在高可用的k8s集群中,当Node节点挂掉,kubelet无法提供工作的时候,pod将会自动调度到其他的节点上去,而调度到节点上的时间需要我们慎重考量,因为它决定了生产的稳定性.可靠性,更快的迁移可以 ...

  9. 对象存储 COS 帮您轻松搞定跨域访问需求

    背景 早期为了避免 CSRF(跨站请求伪造) 攻击,浏览器引入了 "同源策略" 机制.如果两个 URL 的协议,主机名(域名/IP),端口号一致,则视为这两个 URL " ...

  10. 一文搞定全场景K3s离线安装

    作者简介 王海龙,Rancher中国社区技术经理,负责Rancher中国技术社区的维护和运营.拥有6年的云计算领域经验,经历了OpenStack到Kubernetes的技术变革,无论底层操作系统Lin ...