RMQ(Range Minimum/Maximum Query)区间最值查询,即给出长度为n的数组A,以及m组询问s、t(s<=t<=n),返回区间[s,t]中的最值。

基于线段树的方法实现的话,建树O(n),查询O(logn),相比ST,适合用于n更大,m较小的情况。

void built(int k, int l, int r)
{
if (l==r) t[k] = a[l]; //到叶子上,则赋值
else {
built(k*2+1, l, (l+r)/2); //左儿子
built(k*2+2, (l+r)/2, r); //右儿子
t[k] = min(t[k*2+1], t[k*2+2]); //回溯赋值
}
}
void update(int k, int a)
{
//叶子节点
k += n-1;
t[k] = a;
//向上更新
while (k>0) {
k = (k-1)/2;
t[k] = min(t[k*2+1], t[k*2+2]);
}
}
int query(int a, int b, int k, int l, int r) //查询区间[a,b], 当前查询结点的位置为k, 所表示的区间为[l,r],默认k为根结点
{
if (r<=a||b<=l) return INF; //当前区间与所查询区间无交集,返回一个不影响答案的值
if (a<=l&&r<=b) return t[k]; //当前区间包含于所查询区间,直接返回当前区间的最值就好了
else {
int vl = query(a, b, k*2+1, l, (l+r)/2); //查询左儿子
int vr = query(a, b, k*2+1, (l+r)/2, r); //查询右儿子
return min(vl, vr);
}
}

https://blog.csdn.net/zearot/article/details/48299459

https://blog.csdn.net/lian233/article/details/58250641

基于线段树的RMQ的更多相关文章

  1. 51nod1174【基于线段树的RMQ】

    很基础啊~ #include <bits/stdc++.h> using namespace std; typedef long long LL; const int INF=-0x3f3 ...

  2. 线段树+RMQ问题第二弹

    线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...

  3. POJ 3368 Frequent values 线段树与RMQ解法

    题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...

  4. POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)

    http://poj.org/problem?id=3264 Time Limit: 5000MS     Memory Limit: 65536K Description For the daily ...

  5. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  6. tyvj 1038 忠诚 区间最小值 线段树或者rmq

    P1038 忠诚 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天 ...

  7. Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)

    Strip time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...

  8. V-Parenthesis 前缀+ZKW线段树或RMQ

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  9. POJ - 3264 Balanced Lineup(线段树或RMQ)

    题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

随机推荐

  1. CS系统中分页控件的制作

    需求:在一个已有的CS项目(ERP中),给所有的列表加上分页功能. 分页的几个概念: 总记录数  totalCount (只有知道了总记录数,才知道有多少页) 每页记录数  pageSize (根据总 ...

  2. C#处理医学图像(二):基于Hessian矩阵的医学图像增强与窗宽窗位

    根据本系列教程文章上一篇说到,在完成C++和Opencv对Hessian矩阵滤波算法的实现和封装后, 再由C#调用C++ 的DLL,(参考:C#处理医学图像(一):基于Hessian矩阵的血管肺纹理骨 ...

  3. Nginx基础知识学习(安装/进程模型/事件处理机制/详细配置/定时切割日志)

    一.Linux下Nginx的安装 1.去官网 http://nginx.org/download/下载对应的Nginx安装包,推荐使用稳定版本. 2.上传Nginx到Linux服务器. 3.安装依赖环 ...

  4. 【EXP】Oracle多表导出问题

    有些时候,需要导入某个用户的一些相关表.但是不知道用户的用户名和密码.这样就很尴尬 但是如果手上有dba权限的用户的话,就很方便的能导出了 先要知道多表导出的语句 exp system/123456 ...

  5. mysql+MHA高可用

    MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司)开发,是一套优秀 ...

  6. Py基础—变量名,条件循环,空执行,编码,运算符,字符比较,简化写法

    变量名 只能是字母,数字,下划线.数字不能开头,不要和python内置的东西重复.赋予变量名内容:name1 = "shit" 输出变量名内容 print(name1) 条件语句 ...

  7. 用动图讲解分布式 Raft

    一.Raft 概述 Raft 算法是分布式系统开发首选的共识算法.比如现在流行 Etcd.Consul. 如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求.比如分布式配置系统.分布 ...

  8. 抽取一部分服务端做BFF(Backend For Frontend服务于前端的后端)

    Flutter+Serverless端到端研发架构实践 · 语雀 https://www.yuque.com/xytech/flutter/kdk9xc 2019-12-19 13:14 作者:闲鱼技 ...

  9. 关于MongoDB的简单理解(二)--Java篇

    一.声明 本文依赖于 MongoDB JVM DRIVERS 4.1 版本编写. 本文案例依赖于 Maven 项目管理工具. 二.本文主要讲解哪些内容? 如何连接到MongoDB 通过TLS/SSL连 ...

  10. 在Centos7上安装Python+Selenium+Chrome+Chromedriver

    1.下载Chrome 上一篇文章已经演示过了Python+Selenium+Firefox+Geckodriver安装步骤并通过自动化脚本打开百度 因此当前只需要安装Chrome和Chromedriv ...