题目

题目描述

今天,接触信息学不久的小\(A\)刚刚学习了卡特兰数。

卡特兰数的一个经典定义是,将\(n\)个数依次入栈,合法的出栈序列个数。

小\(A\)觉得这样的情况太平凡了。于是,他给出了\(m\)组限制,每个限制形如\((f_i,g_i)\),表示\(f_i\)不能在\(g_i\)之后出栈。

他想求出:在满足了这\(m\)组限制的前提下,共有多少个合法的出栈序列。他不喜欢大数,你只需要求出答案在模\(998244353\)意义下的值即可。

输入格式

输入第一行为两个非负整数,\(n\)、\(m\),含义题面已给出。

接下来\(m\)行,每行两个正整数,\((f,g)\) 表示一组限制。

输出格式

输出一行,为一个非负整数,表示你求得的答案 \(mod\space 998244353\)。

样例输入

3 1
2 3

样例输出

3

样例解释

可以验证\(\{1,2,3\}\),\(\{2,1,3\}\),\(\{2,3,1\}\)都是合乎条件的。

数据规模

\(编号\) \(分值\) \(n\) \(m\) \(特殊性质\)
\(1\) \(15\) \(\le 300\) \(= 0\)
\(2\) \(15\) \(\le 7\) \(\le 10\)
\(3\) \(15\) \(\le 100\) \(\le 50\)
\(4\) \(15\) \(\le 300\) \(保证所有的f_i相同\)
\(5\) \(20\) \(\le 300\) \(\le 300\)
\(6\) \(20\) \(\le 300\)

对于全部的数据,保证\(n\le 300\),\(m\le \frac{n(n-1)}{2}\),\(f_i、g_i \le n\)。

题解

题目大意:\(n\)个数以此入栈,问在满足\(m\)个形如\(f_i\)不能在\(g_i\)后出栈的限制的出栈序列数

45%

我们知道卡特兰数有个推导公式是\(f_i=\sum_{i=1}^nf_i\times f_{n-i-1}\),这个公式实际上是枚举了最后出栈的数

那么扩展到这题,我们将\(dp\)转换为区间\(dp\),枚举\(k\)为最后出栈的数,那么有两种情况不合法:\(f=k\)或者\(f>k>g\)。当\(f=k\)的时候,\(f\)是最后出栈的,显然不合法。而我们知道,小于\(k\)总是比大于\(k\)的先出栈,所以当\(f>k>g\)时也是不合法的

设\(f[i][j]\)表示\(i\)到\(j\)这个区间的合法出栈序列,那么在上述两种不合法的情况不成立的情况下,\(f[i][j]+=f[i][k-1]\times f[k+1][j]\)

时间复杂度\(O(n^3m)\),预计得分\(45\)

100%

考虑优化\(dp\),在\(O(1)\)的时间内判断合不合法。不合法条件\(f>k>g\)成立,说明\(f>g\),那么在读入时\(f>g\)的放入平面直角坐标系中,坐标\((f,g)\),那么可以前缀和优化

记录前缀和\(sm[i][j]\)和\(l[i][j]\),分别记录\(f>g\)以及所有的点,用来判断\(f>k>g\)和\(f=k\)的情况

构造一个矩形

其中\(i,j,k\)分别是区间起点,终点,以及最后出栈的数

\(f=k\)说明\(l[k][j]-l[k][i-1]>0\),而如果矩形\(sm(i,i,j,k-1)-sm(i,i,k,j)>0\),说明有\(f>k>g\)的情况,这两种情况都是不合法的

这样的话时间复杂度优化到了\(O(n^3)\),预计得分\(100\)

Code

#include<cstdio>
#define mod 998244353
#define N 310
#define ll long long
using namespace std;
ll n,m,f[N][N],sm[N][N],al[N][N];
ll get(ll x,ll y,ll p,ll q) {return sm[x][y]-sm[x][q-1]-sm[p-1][y]+sm[p-1][q-1];}
int main()
{
freopen("catalan.in","r",stdin);
freopen("catalan.out","w",stdout);
scanf("%lld%lld",&n,&m);
for (ll i=1,x,y;i<=m;++i)
{
scanf("%lld%lld",&x,&y);
if (x!=y)
{
if (x>y) ++sm[x][y];
++al[x][y];
}
}
for (ll i=1;i<=n;++i)
for (ll j=1;j<=n;++j)
{
sm[i][j]=sm[i][j]+sm[i-1][j]+sm[i][j-1]-sm[i-1][j-1];
al[i][j]=al[i][j]+al[i][j-1];
}
for (ll i=1;i<=n;++i)
f[i][i]=f[i+1][i]=f[i][i-1]=1;
for (ll len=2;len<=n;++len)
for (ll i=1;i+len-1<=n;++i)
{
ll j=i+len-1;
for (ll k=i;k<=j;++k)
{
ll x;
if (k>i) x=get(j,k-1,i,i)-get(k,j,i,i);
else x=0;
ll y=al[k][j]-al[k][i-1];
if (x<=0&&y<=0) f[i][j]=(f[i][j]+f[i][k-1]*f[k+1][j]%mod)%mod;
}
}
printf("%lld\n",f[1][n]);
fclose(stdin);
fclose(stdout);
return 0;
}

【2020.12.01提高组模拟】卡特兰数(catalan)的更多相关文章

  1. 【2020.12.01提高组模拟】A组反思

    105,rk45 T1 赛时一开始先打了\(m=0\)的情况,也就是普通的卡特兰数,然后打了暴力,样例过了,把样例改改就不行了,原因没有保证是枚举的是合法的出栈序列 得分:\(WA\&TLE1 ...

  2. 【2020.12.02提高组模拟】球员(player)

    题目 题目描述 老师们已经知道学生喜欢睡觉,Soaring是这项记录保持者.他只会在吃饭或玩FIFA20时才会醒来.因此,他经常做关于足球的梦,在他最近的一次梦中,他发现自己成了皇家马德里足球俱乐部的 ...

  3. 【2020.12.03提高组模拟】A组反思

    估计:40+10+0+0=50 实际:40+10+0+0=50 rank40 T1 赛时看到\(n,m\leq9\),我当机立断决定打表,暴力打了几个点之后发现在\(n\ne m\)且\(k\ne0\ ...

  4. 【2020.12.02提高组模拟】A组反思

    55,rk47 T1 赛时先想了\(trie\),想到不一定是前缀,然后就放弃转为打暴力 得分:\(RE22\) 正解是只用判断\(i\)与\(i+1\)的关系,那么只有两种情况,判断一下然后\(dp ...

  5. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  6. 【2020.11.28提高组模拟】T2 序列(array)

    序列(array) 题目描述 ​给定一个长为 \(m\) 的序列 \(a\). 有一个长为 \(m\) 的序列 \(b\),需满足 \(0\leq b_i \leq n\),\(\sum_{i=1}^ ...

  7. 【2020.11.30提高组模拟】剪辣椒(chilli)

    剪辣椒(chilli) 题目描述 在花园里劳累了一上午之后,你决定用自己种的干辣椒奖励自己. 你有n个辣椒,这些辣椒用n-1条绳子连接在一起,任意两个辣椒通过用若干个绳子相连,即形成一棵树. 你决定分 ...

  8. 【2020.11.30提高组模拟】删边(delete)

    删边(delete) 题目 题目描述 给你一棵n个结点的树,每个结点有一个权值,删除一条边的费用为该边连接的两个子树中结点权值最大值之和.现要删除树中的所有边,删除边的顺序可以任意设定,请计算出所有方 ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. Liquibase+SpringBoot的简单使用笔记!update+rollback

    该笔记记录了springboot整合liquibase之后,如何根据liquibase ChangeLogFile对数据库进行修改以及回滚操作 参考: baeldung.com JHipster 1. ...

  2. cdm 生成pdm时, 外键的命名规则

    在CDM 生成PDM时,生成的外键默认的规则是:父表名称的前三个字母+"_"+主键 为子类的外键,可是在一些情况,很不习惯用 父表的前三个字母命名,需要用自己的规则来生成外键,此时 ...

  3. 异常记录-Dialog样式踩坑

    好久没记录文档了,拖了老半个月,终于空下来时间,为了避免以后踩坑,必须记录记录. 背景: 为activity设置样式为弹窗activity 异常一: activity设置style后,布局不能够正常显 ...

  4. 线程范围内的环境变量---ThreadLocal

    package cn.itcast.heima2; import java.util.HashMap; import java.util.Map; import java.util.Random; p ...

  5. 服务和进程管理及查看分区和cpu

    查看分区:cat /proc/partitions   [root@lbg init.d]# cat /proc/partitions major minor  #blocks  name       ...

  6. ceph的jewel新支持的rbd-nbd

    jewel版本新增加了一个驱动NBD,允许librbd实现一个内核级别的rbd NBD相比较于kernel rbd: rbd-ko是根据内核主线走的,升级kernel rbd需要升级到相应的内核,改动 ...

  7. 不同角度看Handler——另类三问

    之前有一章节介绍了Handler的常见面试题,今天就来说说另类的,可能你没关注的其他问题,一起看看吧. 系统为什么提供Handler 这点大家应该都知道一些,就是为了切换线程,主要就是为了解决在子线程 ...

  8. Python_网络编程_socket()

    什么是 Socket? Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求,使主机间或者一台计算机上的进程间可以通讯. 详细资 ...

  9. [LeetCode题解]234. 回文链表 | 快慢指针 + 反转链表

    解题思路 找到后半部分链表,再反转.然后与前半部分链表比较 代码 /** * Definition for singly-linked list. * public class ListNode { ...

  10. 如何使用iMazing编辑iOS设备的备份

    乍一看,编辑iPhone或iPad的备份似乎是一个奇怪的命题,但实际上这样做的原因有很多,例如在备份数据损坏时进行修复,又如合并来自不同设备的数据. iMazing对备份文件编辑的支持非常全面,即使备 ...