「单调队列优化DP」P2034 选择数字

题面描述:

给定一行n个非负整数a[1]..a[n]。现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择。你的任务是使得选出的数字的和最大。

输入格式

第一行两个整数n,k

以下n行,每行一个整数表示a[i]。

输出格式

输出一个值表示答案。

输入输出样例

输入 #1

5 2

1

2

3

4

5

输出 #1

12

说明/提示

对于20%的数据,n <= 10

对于另外20%的数据, k = 1

对于60%的数据,n <= 1000

对于100%的数据,1 <= n <= 100000,1 <= k <= n,0 <= 数字大小 <= 1,000,000,000

时间限制500ms

解法

一般正常求序列几段和都要求前缀和,f的第一维都是前i项的最优值

那我们直接开始吧,

f[i]=max(f[j])+a[i] ( i-k<=j<i )

然鹅叫上去可能只对两个点(可能连样例都不过),原因是方程都错了,少了一维,i不一定选取就是最佳选择,如1 8 4 2 999 k=2,显然不选4要更优, 所以正确的转移方程:

//0表示不选第i个数,1表示选第i个数

f[0][i]=max(f[0][i-1],f[1][i-1]);

f[1][i]=max(f[0][j]-sum[j])+sum[i];

亲测O(n*n)+快读能压线过

所以考虑优化

我们用单调队列维护f[0][j]-sum[j]的最优值,因为它完全符合单调性,维护就完事

代码:

/*#!/bin/sh
dir=$GEDIT_CURRENT_DOCUMENT_DIR
name=$GEDIT_CURRENT_DOCUMENT_NAME
pre=${name%.*}
g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11
if test $? -eq 0; then
gnome-terminal -x bash -c "time $dir/$pre;echo;read;"
fi*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e6+5,INF=0x3f3f3f3f;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();};
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int n,d,a[maxn],head=1,tail;
long long sum[maxn],f[2][maxn],q[maxn];//每个数有1e9诶
int main(){
n=read();d=read();
for(int i=1;i<=n;i++)a[i]=read(),sum[i]=sum[i-1]+a[i];
f[1][1]=a[1];tail++;//tail=0需要初始化,tail=1就不需要,推荐写tail=0
for(int i=2;i<=n;i++){
f[0][i]=max(f[0][i-1],f[1][i-1]);//不选第i个数的情况
while(head<=tail&&i-q[head]>d)head++;//维护队首,i-k>j(q[head])
f[1][i]=f[0][q[head]]-sum[q[head]]+sum[i];
while(head<=tail&&f[0][i]-sum[i]>f[0][q[tail]]-sum[q[tail]])tail--;//维护队列单调性,新数大于原数就出队
q[++tail]=i;
}
cout<<max(f[0][n],f[1][n]); }

「单调队列优化DP」P2034 选择数字的更多相关文章

  1. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  2. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  3. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  4. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  5. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  6. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  7. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  8. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  9. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

随机推荐

  1. Jmeter连接数据库进行参数化

    实际使用Jmeter进行性能测试或接口测试自动化过程中,很多场景需要从数据库中获取一些关键性参数,或进行一些断言,比较,那么如何进行数据库连接以及怎么获取参数就变得尤为重要 一.下载mysql驱动 1 ...

  2. LoadRunner性能测试笔试/面试题

    客户交付一个性能测试项目,请阐述你的实施流程. 测试设计阶段: 1)了解被测系统的性能需求,定义测试目标和范围: 2)了解系统的技术信息,如系统架构等: 3)确定测试方案.进度安排,并制定测试计划,场 ...

  3. KVM Web管理平台 WebVirtMgr

    WebVirtMgr介绍 WebVirtMgr是一个KVM管理平台,让kvm管理变得更为可视化,对中小型kvm应用场景带来了更多方便.WebVirtMgr采用几乎纯Python开发,其前端是基于Pyt ...

  4. SpringMVC中的@RequestMapping注解

    @RequestMapping:设置请求映射,把请求和控制层中的方法设置映射关系 属性: 当请求路径和@RequestMapping的value属性一致时,则该注解所标注的方法即为处理请求的方法 me ...

  5. SSH原理常见应用升级及端口转发

    SSH介绍 SSH是Secure Shell Protocol的简写,由IETF网络工作小组(Network working Group)指定:在进行数据传输之前,SSH先对联机数据包通过加密技术进行 ...

  6. ecshop php商城系统数据库结构及表的介绍分析

      ecshop共86张表,确实比较多,不过功能确实最完善的. 表结构分析 ecs_account_log // 用户账目日志表 ecs_activity // 活动表(代码,名称,开始,结束,描述) ...

  7. [TopCoder]Seatfriends

    题目   点这里看题目. 分析   可以想到用 DP 解决.   由于把空位放到状态里面太麻烦了,因此我们单独将 " 组 " 提出来进行 DP .   \(f(i,j)\):前\( ...

  8. XAI/MLI 可解释机器学习系列1- 开源&paper汇总

    一直在关注可解释机器学习领域,因为确实在工作中有许多应用 模型检查,特征重要性是否符合预期和AUC一样重要 模型解释,比起虚无缥缈的模型指标,解释模型学到的规律更能说服业务方 样本解释,为什么这些用户 ...

  9. SpringMVC框架搭建流程(完整详细版)

    SpringMVC框架搭建流程 开发过程 1)配置DispatcherServlet前端控制器 2)开发处理具体业务逻辑的Handler(@Controller. @RequestMapping) 3 ...

  10. cb24a_c++_STL算法简介

    算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成.       <algorithm>是所有STL ...