import time

print(time.time())
print(time.localtime())
print(time.strftime('%Y-%m-%d %X',time.localtime()))

绘图显示中文配置

import matplotlib.pyplot as plt

a = [1,1,2,3]
b = [2,2,2,2]
plt.plot(a,b)
plt.title("天生自然")
plt.show()

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv")
print(df.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df.to_csv("E:\\temp\\taobao_price_data.csv", columns=["宝贝","价格"],index=False,header=True)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df[0:3])

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
cols = df[["宝贝","价格"]]
print(cols.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.ix[0:3,["宝贝","价格"]]
print(a)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df["销售量"] = df["价格"]*df["成交量"]
print(df.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[(df["价格"]<100)&(df["成交量"]<10000)]
print(a)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())
df1 = df.set_index("位置")
print(df1.head())
df2 = df1.sort_index()
print(df2.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"])
print(df1.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"]).sortlevel(0)
print(df1.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1)
print(a.head())

b = df.drop(["宝贝","卖家"],axis=1).groupby("位置")
print(b.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean().sort_values("成交量",ascending=False)
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").sum().sort_values("成交量",ascending=False)
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.info())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe(include=["object"]))

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"])
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"]).mean()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby([df["位置"],df["卖家"]]).mean()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby("位置").mean()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).mean()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).size()
print(a.head())

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
print(a)

b = df[90:95][["卖家","成交量"]]
print(b)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b)
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b,on="卖家")
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="outer")
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="left")
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="right")
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
print(a)
b = df[:10][["卖家","成交量"]]
print(b)
c = pd.merge(a,b,how="right")
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["卖家","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = a.join(b)
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
b = df[5:10]["宝贝"]
c = df[10:15]["宝贝"]
d = pd.concat([a,b,c])
print(d)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
print(a)
b = df[:5]["价格"]
print(b)
c = df[:5]["成交量"]
print(c)
d = pd.concat([a,b,c],axis=1)
print(d)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b])
print(c)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b],axis=1)
print(c)

吴裕雄 python 数据处理(1)的更多相关文章

  1. 吴裕雄 python 数据处理(3)

    import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...

  2. 吴裕雄 python 数据处理(2)

    import pandas as pd data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz ...

  3. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  4. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  5. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

随机推荐

  1. 【python】class之子类

    父类: class AddrBookEntry(object): "address book entry class" def __init__(self, nm, ph): se ...

  2. PHP $_SERVER 祥细解读(有事例)

    为了看的更明白,添加上了事例 例如  'www.ceshiyuming.com/ceshi.php?p=123';Array(    [HOSTNAME] =>     [PATH] => ...

  3. 数据库启动失败:The server quit without updating PID file

    1.可能是/usr/local/mysql/data/mysql.pid文件没有写的权限解决方法 :给予权限,执行 “chown -R mysql:mysql /var/data” “chmod -R ...

  4. R语言学习——欧拉计划(11)Largest product in a grid

    Problem 11 In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 0 ...

  5. 在chrome中安装基于REST的web服务客户端

    基于REST的Web服务客户端的使用方法 点击转到基于REST的Web服务客户端下载页面 chrome浏览器如果安装扩展程序点击chrome浏览器右上角,选择“设置在“设置”对话框里选择“扩展程序”然 ...

  6. 1065 A+B and C (64bit) (20 分)

    1065 A+B and C (64bit) (20 分) Given three integers A, B and C in [−2^​63​​,2​^63​​], you are suppose ...

  7. html_常用技巧总结

    =============  博客大全: 脚本之家:http://www.jb51.net/list/list_233_104.htm 红黑联盟: http://www.2cto.com/kf/yid ...

  8. Windows 8的用户模式Shim Engine小探及利用

    转载: https://bbs.pediy.com/thread-175483.htm Windows Shim Engine,即Windows 兼容性模式实现引擎,在exe文件的属性对话框中有一个兼 ...

  9. Oracle跨库复制表结构

    1.首先建立远程连接 create public database link LINK_SJPSconnect to system identified by manager using '(DESC ...

  10. 黏包的原理 (tcp udp) struct模块

    黏包 指数据混乱问题(发送端发送数据,接收端不知如何去接收) 只有tcp协议才会发送粘包,udp不会发生 黏包(tcp) 有一个合包机制(nagle算法),将多次连续发送且间隔较小的数据,进行打包成一 ...