C++矩阵库 Eigen 快速入门
最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了。 Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。此外,Eigen的接口清晰,稳定高效。唯一的问题是之前一直用 Matlab,对 Eigen 的 API 接口不太熟悉,如果能有 Eigen 和 Matlab 对应的说明想必是极好的,终于功夫不负有心人,让我找到了,原文在这里,不过排版有些混乱,我将其重新整理了一下,方便日后查询。
Eigen 矩阵定义
#include <Eigen/Dense> Matrix<double, , > A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, , Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, , , RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //
Eigen 基础使用
// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i, j) // C(i+1,j+1) // A.resize(, ); // Runtime error if assertions are on.
B.resize(, ); // Runtime error if assertions are on.
A.resize(, ); // Ok; size didn't change.
B.resize(, ); // Ok; only dynamic cols changed. A << , , , // Initialize A. The elements can also be
, , , // matrices, which are stacked along cols
, , ; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(); // Fill A with all 10's.
Eigen 特殊矩阵生成
// Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
Eigen 矩阵分块
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
Eigen 矩阵元素交换
// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
Eigen 矩阵转置
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R)
Eigen 矩阵乘积
// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
Eigen 矩阵单个元素操作
// Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q)
Eigen 矩阵化简
// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)
Eigen 矩阵点乘
// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
Eigen 矩阵类型转换
//// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done
Eigen 求解线性方程组 Ax = b
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
Eigen 矩阵特征值
// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>
参考文献
【1】http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
【2】http://blog.csdn.net/augusdi/article/details/12907341
C++矩阵库 Eigen 快速入门的更多相关文章
- C++ 矩阵库 eigen
找了好久才发现了一个这么方便的C++矩阵库. 官网 http://eigen.tuxfamily.org/index.php?title=Main_Page 参考文章 http://blog.csdn ...
- C++矩阵库 Eigen 简介
最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了. Eigen 是一个基于C++模板的线性代数库, ...
- Druid入门(1)—— 快速入门实时分析利器-Druid_0.17
一.安装准备 本次安装的版本是截止2020.1.30最新的版本0.17.0 软件要求 需要Java 8(8u92 +)以上的版本,否则会有问题 Linux,Mac OS X或其他类似Unix的操作系统 ...
- 【番外篇】ASP.NET MVC快速入门之免费jQuery控件库(MVC5+EF6)
目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策 ...
- Eigen 矩阵库学习笔记
最近为了在C++中使用矩阵运算,简单学习了一下Eigen矩阵库.Eigen比Armadillo相对底层一点,但是只需要添加头文库即可使用,不使用额外的编译和安装过程. 基本定义 Matrix3f是3* ...
- numpy快速入门
numpy快速入门 numpy是python的科学计算的核心库,很多更高层次的库都基于numpy.博主不太喜欢重量级的MATLAB,于是用numpy进行科学计算成为了不二选择. 本文主要参考Scipy ...
- Go 快速入门
入门 Go 语言需要多久?答案是 -- 读完这篇文章的时间!不妨找一个周末的下午,踏上 Go 之旅吧! 更新记录: 2016.12.12: 完成重制 2016.11.02: 增加重点理解和参考链接 2 ...
- 【第三篇】ASP.NET MVC快速入门之安全策略(MVC5+EF6)
目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策 ...
- grunt快速入门
快速入门 Grunt和 Grunt 插件是通过 npm 安装并管理的,npm是 Node.js 的包管理器. Grunt 0.4.x 必须配合Node.js >= 0.8.0版本使用.:奇数版本 ...
随机推荐
- jQuery:find()方法与children()方法的区别
1:children及find方法都用是用来获得element的子elements的,两者都不会返回 text node,就像大多数的jQuery方法一样. 2:children方法获得的仅仅是元素一 ...
- C# AES 加密与解密
AES 算法加密(ECB模式) 将明文加密,加密后进行base64编码,返回密文 /// <summary> /// AES 算法加密(ECB模式) 将明文加密,加密后进行base64编码 ...
- Android 获取View中的组件
可以把这个view强转成ViewGroup对象,再通过getChildAt(0),getChildAt(1) 获取之后AddView可能会报错:IllegalStateException: The s ...
- 9.14.16 Django ORM进阶用法
2018-9-14 14:26:45 ORM 练习题 : http://www.cnblogs.com/liwenzhou/articles/8337352.html 2018-9-14 21:1 ...
- Spring注解及作用
一: spring mvc中的@PathVariable是用来获得请求url中的动态参数的 @PathVariable用于方法中的参数,表示方法参数绑定到地址URL的模板: 例 @Controller ...
- MySQL权限和用户管理
Mysql权限系统(由mysql权限表进行控制user和db)通过下面两个方面进行认证: 1)对于连接的用户进行身份验证,合法的通过验证,不合法的拒绝连接. 2)对于通过连接认证的用户,可以在合法的范 ...
- stress test - volume test
D:\wamp64\bin\mysql\mysql5.7.11\bin>mysqlslap --delimiter=";" --query=" INSERT I N ...
- iOS多线程编程之NSThread的使用(转载)
1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1.NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue的 ...
- sklearn学习总结(超全面)
https://blog.csdn.net/fuqiuai/article/details/79495865 前言sklearn想必不用我多介绍了,一句话,她是机器学习领域中最知名的python模块之 ...
- MYSQL 命令行显示乱码 解决方案
中文乱码是因为编码集不支持,所以要改变编码 先查看下设置的编码 使用如下命令 show variables like 'character%'; 在 mysql.conf (Ubuntu mysql5 ...