目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练。
import xml.etree.ElementTree as ET
import numpy as np
import os
import tensorflow as tf
from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return [x, y, w, h] def convert_annotation(image_id):
in_file = open('F:/xml/%s.xml'%(image_id)) tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
bboxes = []
for i, obj in enumerate(root.iter('object')):
if i > 29:
break
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w, h), b) + [cls_id]
bboxes.extend(bb)
if len(bboxes) < 30*5:
bboxes = bboxes + [0, 0, 0, 0, 0]*(30-int(len(bboxes)/5)) return np.array(bboxes, dtype=np.float32).flatten().tolist() def convert_img(image_id):
image = Image.open('F:/snow leopard/test_im/%s.jpg' % (image_id))
resized_image = image.resize((416, 416), Image.BICUBIC)
image_data = np.array(resized_image, dtype='float32')/255
img_raw = image_data.tobytes()
return img_raw filename = os.path.join('test'+'.tfrecords')
writer = tf.python_io.TFRecordWriter(filename)
# image_ids = open('F:/snow leopard/test_im/%s.txt' % (
# year, year, image_set)).read().strip().split() image_ids = os.listdir('F:/snow leopard/test_im/')
# print(filename)
for image_id in image_ids:
print (image_id)
image_id = image_id.split('.')[0]
print (image_id) xywhc = convert_annotation(image_id)
img_raw = convert_img(image_id) example = tf.train.Example(features=tf.train.Features(feature={
'xywhc':
tf.train.Feature(float_list=tf.train.FloatList(value=xywhc)),
'img':
tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
}))
writer.write(example.SerializeToString())
writer.close()
Python读取文件夹下图片的两种方法:
import os
imagelist = os.listdir('./images/') #读取images文件夹下所有文件的名字
import glob
imagelist= sorted(glob.glob('./images/' + 'frame_*.png')) #读取带有相同关键字的图片名字,比上一中方法好
参考:
https://blog.csdn.net/CV_YOU/article/details/80778392
https://github.com/raytroop/YOLOv3_tf
目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练的更多相关文章
- 训练自己数据-xml文件转voc格式
首先我们有一堆xml文件 笔者是将mask-rcnn得到的json标注文件转为xml的 批量json转xml方法:https://www.cnblogs.com/bob-jianfeng/p/1112 ...
- yolo系列目标检测+自标注数据集进行目标识别
1. yolov1的识别原理 参考:https://blog.csdn.net/u010712012/article/details/85116365 https://blog.csdn.net/gb ...
- [AI开发]目标检测之素材标注
算力和数据是影响深度学习应用效果的两个关键因素,在算力满足条件的情况下,为了到达更好的效果,我们需要将海量.高质量的素材数据喂给神经网络,训练出高精度的网络模型.吴恩达在深度学习公开课中提到,在算力满 ...
- (转)如何用TensorLayer做目标检测的数据增强
数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只 ...
- 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...
- 【目标检测实战】目标检测实战之一--手把手教你LMDB格式数据集制作!
文章目录 1 目标检测简介 2 lmdb数据制作 2.1 VOC数据制作 2.2 lmdb文件生成 lmdb格式的数据是在使用caffe进行目标检测或分类时,使用的一种数据格式.这里我主要以目标检测为 ...
- 平均精度均值(mAP)——目标检测模型性能统计量
在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择.当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同. 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被 ...
- 目标检测模型的性能评估--MAP(Mean Average Precision)
目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...
- 【目标检测】SSD:
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnb ...
随机推荐
- 基于TQ2440开发板的WiFi模块的使用经验总结
一.软.硬件资源准备: 内核版本:linux-2.6.30.4 交叉编译器版本:4.3.3 wpa_supplicant工具:wpa_supplicant-0.7.3.tar ; openssl-0. ...
- 算法笔记_232:提取拼音首字母(Java)
目录 1 问题描述 2 解决方案 1 问题描述 在很多软件中,输入拼音的首写字母就可以快速定位到某个词条.比如,在铁路售票软件中,输入: “bj”就可以定位到“北京”.怎样在自己的软件中实现这个功 ...
- PowerDesigner使用笔记
一:PDM模版使用 1:新建model:File——new model——选择PDM,填上名字.数据库类型 2:右侧工具类使用 3:创建表与配置 点击右侧工具栏中table控件,移动到模版面板内点击一 ...
- 在 Vim 中使用 pydiction 对 Python 进行代码补全
Pydiction 允许你在 Vim 中实现 TAB 代码补全, 可以补全的内容包括:标准的.自定义的,以及第三方模块和包.外加关键字.BIFs,和字符串. Pydiction 由 3 个主要文件构成 ...
- createjs入门
createjs是一个轻量级的框架,稍微有点时间和耐心,就可以把全部源代码都看一遍,毕竟只有三十几个js文件.地址:http://www.createjs.com/ 开发createjs的动画或游戏, ...
- python之模块py_compile用法(将py文件转换为pyc文件)
# -*- coding: cp936 -*- #python 27 #xiaodeng #python之模块py_compile用法(将py文件转换为pyc文件):二进制文件,是由py文件经过编译后 ...
- fiddlescript 操作
什么是 JScript .NET Fiddler Script 是用JScript.NET语言写的 http://docs.telerik.com/fiddler/KnowledgeBase/Fidd ...
- 转 通过phpize为php在不重新编译php情况下安装模块openssl
假定:php编译安装路径:/usr/local/php/apache编译安装路径:/usr/local/apache/php配置文件路径:/etc/php.iniphp安装源路径:/usr/sourc ...
- Windows server 2012-remoteapp RDWEB修改默认端口
RDWEBl默认是通过3389端口调用remoteapp发布的应用程序.如果要修改该端口,可按下面的方式来修改: 1.修改mstsc远程连接的端口 http://www.cnblogs.com/rus ...
- Retrofit、Okhttp使用小记(cookie,accesstoken,POST
博主在项目中用RxJava也差不多几个月了,但是结合Retrofit使用经验还不是太多.恰好新项目的后台是http+json的,就打算尝试一把. 刚开始由于Retrofit还不太熟,但是后台接口急着测 ...