Eddy's digital Roots

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5183    Accepted Submission(s): 2897

Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

 
Input
The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
 
Output
Output n^n's digital root on a separate line of the output.
 
Sample Input
2
4
0
 
Sample Output
4
4
 
题目大意:将一个数n的各位数字加起来,如果得到的是一个一位数,那么这个数就叫n的数根,如果是两位数或多位数,则重复这个过程,直到得到的数字是一位数。现在给出n,求n^n的数根。
题目解析:最终的答案是小于10的,相当于各位数的和模10,可以不转化为对9取模,当余数为0时,则相当于模10余9。这样,便转化为了求各位数的和模9。这样便能运用九余数定理了。九余数定理的内容是这样的,一个数的各位之和除以9的余数等于这个数除以9的余数。
 
代码如下:
 # include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
int ans=;
for(int i=;i<=n;++i)
ans=ans*n%;
if(ans==)
printf("9\n");
else
printf("%d\n",ans);
}
return ;
}

HDU-1163 Eddy's digital Roots(九余数定理)的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots 九余数定理+简单数论

    我在网上看了一些大牛的题解,有些知识点不是太清楚, 因此再次整理了一下. 转载链接: http://blog.csdn.net/iamskying/article/details/4738838 ht ...

  2. HDU 1163 Eddy's digital Roots

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  4. HDU 1163 Eddy's digital Roots(模)

    HDU 1163 题意简单,求n^n的(1)各数位的和,一旦和大于9,和再重复步骤(1),直到和小于10. //方法一:就是求模9的余数嘛! (228) leizh007 2012-03-26 21: ...

  5. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  6. Hdu1163 Eddy's digitai Roots(九余数定理)

    题目大意: 给定一个正整数,根据一定的规则求出该数的“数根”,其规则如下: 例如给定 数字 24,将24的各个位上的数字“分离”,分别得到数字 2 和 4,而2+4=6: 因为 6 < 10,所 ...

  7. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  9. HDU-1163Eddy's digital Roots,九余定理的另一种写法!

    下午做了NYOJ-424Eddy's digital Roots后才正式接触了九余定理,不过这题可不是用的九余定理做的.网上的博客千篇一律,所以本篇就不发篇幅过多介绍九余定理了: 但还是要知道什么是九 ...

随机推荐

  1. C/C++之全局、static对象/变量的初始化问题

    关于全局.static对象/变量的初始化问题 1. 全局变量.static变量的初始化时机:main()函数执行之前(或者说main中第一个用户语句执行之前). 2. 初始化顺序. 1)全局对象.外部 ...

  2. ESOURCE_LOCKED - cannot obtain exclusive access to locked queue '2484_0_00163'

    早上一运维同事说,一个报盘程序启动的时候报了"ESOURCE_LOCKED - cannot obtain exclusive access to locked queue '2484_0_ ...

  3. 20145329 《网络对抗技术》Web基础

    实践目标 Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML. Web前端javascipt 理解JavaScript的基本 ...

  4. 标准IO与文件IO 的区别【转】

    本文转载自:http://blog.sina.com.cn/s/blog_63f31f3401013jrn.html 先来了解下什么是标准IO以及文件IO. 标准IO:标准I/O是ANSI C建立的一 ...

  5. P3386 【模板】二分图匹配 -网络流版

    二分图匹配 题目背景 二分图 感谢@一扶苏一 提供的hack数据 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+ ...

  6. 51nod 1021 石子归并

    区间dp 递推比递归的常数要小  所以还是尽量学会递推吧 看题解  各种恶心啊  有木有 还是视频讲的直接呃   不过就是讲的有点儿慢 链接:https://www.bilibili.com/vide ...

  7. [BZOJ1060][ZJOI2007]时态同步 树形dp

    Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路 ...

  8. 4、CommonChunkPlugin提取公共js-提取多个

    cnpm install css-loader --save-dev    //css-loader 是将css打包进js cnpm install style-loader --save-dev   ...

  9. mybatis与hibernate常用的持久化类,及sqlsession和sqlsessionTemplate区别

    首先, 通过翻阅源码,我们来整理一下mybatis进行持久化操作时重要的几个类:SqlSessionFactoryBuilder:build方法创建SqlSessionFactory实例.SqlSes ...

  10. HTTP 随笔

    浏览器发送HTTP请求主要分为三部分请求行,Response Headers(响应头信息)和Request Headers(请求头信息). 请求行有分为三部分:请求方法,请求路径和请求协议 请求方法有 ...