『cs231n』线性分类器损失函数
代码部分
SVM损失函数 & SoftMax损失函数:


注意一下softmax损失的用法:

SVM损失函数:
import numpy as np def L_i(x, y, W):
'''
非向量化SVM损失计算
:param x: 输入矢量
:param y: 标准分类
:param W: 参数矩阵
:return:
'''
delta = 1.0
scores = W.dot(x)
correct_score = scores[y]
D = W.shap[0]
loss_i = 0.0
for j in range(D):
if j==y:
continue
loss_i += max(0.0, scores[j] - correct_score + delta)
return loss_i def L_i_vectorized(x, y, W):
'''
半向量化SVM损失计算
:param x: 输入矢量
:param y: 标准分类
:param W: 参数矩阵
:return:
'''
delta = 1.0
scores = W.dot(x)
margins = np.maximum(0, scores - scores[y] + delta)
margins[y] = 0
loss_i = np.sum(margins)
return loss_i
softmax分类器:
import numpy as np # 正常的softmax分类器
f = np.array([123, 456, 789])
# p = np.exp(f) / np.sum(np.exp(f))
# print(p) # 数值稳定化的softmax分类器
f -= np.max(f)
p = np.exp(f) / np.sum(np.exp(f))
print(p)
SoftMax实际应用
练习,softmax 模型:
Note: 你的 softmax(x) 函数应该返回一个形状和x相同的NumPy array类型。
例如,当输入为一个列表或者一维矩阵(用列向量表示一个样本样本)时,比如说以下的:
scores = [1.0, 2.0, 3.0]
应该返回一个同样长度(即3个元素)的一维矩阵:
print softmax(scores)
[ 0.09003057 0.24472847 0.66524096]
对于一个二维矩阵,如以下(列向量表示单个样本),例如:
scores = np.array([[1, 2, 3, 6],
[2, 4, 5, 6],
[3, 8, 7, 6]])
该函数应该返回一个同样大小(3,4)的二维矩阵,如以下:
[[ 0.09003057 0.00242826 0.01587624 0.33333333]
[ 0.24472847 0.01794253 0.11731043 0.33333333]
[ 0.66524096 0.97962921 0.86681333 0.33333333]]
每个样本(列向量)中的概率加起来应当等于 1。你可以用以上的例子来测试你的函数。
ANSWER:
"""Softmax.""" scores = [3.0, 1.0, 0.2] import numpy as np def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x)/np.sum(np.exp(x),axis=0) print(softmax(scores)) # Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()
比较好玩的是plt.plot(x, softmax(scores).T)中,后面的转置了,多线画图时,后面的都是要转置的,因为plt必须要求x和y第一维度大小相等:
plt.plot(np.linspace(0,1,100),np.asarray([10*np.linspace(0,2,100),10*np.linspace(0,1,100)]).T,linewidth=2)
# 可以绘图
# 查看一下shape:
np.linspace(0,1,100).shape
# Out[26]:
# (100,)
np.asarray([10*np.linspace(0,2,100),10*np.linspace(0,1,100)]).shape
# Out[25]:
# (2, 100)
# 必须对应x,y的第一维度大小
SoftMax特点
SoftMax(y*10)后分类器会更自信,SoftMax(y/10)后分类器会失去自信(结果概率平均化)
概念部分
损失函数=代价函数=目标函数







svm给出一个得分,softmax给出一个概率。
『cs231n』线性分类器损失函数的更多相关文章
- 『cs231n』计算机视觉基础
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- cs331n 线性分类器损失函数与最优化
tip:老师语速超快...痛苦= = 线性分类器损失函数与最优化 \(Multiclass SVM loss: L_{i} = \sum_{j \neq y_{i}} max(0,s_{i}-s_{y ...
- 『cs231n』视频数据处理
视频信息 和我之前的臆想不同,视频数据不仅仅是一帧一帧的图片本身,还包含个帧之间的联系,也就是还有一个时序的信息维度,包含人的动作判断之类的任务都是要依赖动作的时序信息的 视频数据处理的两种基本方法 ...
- 『cs231n』绪论
笔记链接 cs231n系列所有图片笔记均拷贝自网络,链接如上,特此声明,后篇不再重复. 计算机视觉历史 总结出视觉两个重要结论:1.基础的视觉神经识别的是简单的边缘&轮廓2.视觉是分层的 数据 ...
- 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...
- 『cs231n』无监督学习
经典无监督学习 聚类 K均值 PCA主成分分析 等 深度学习下的无监督学习 自编码器 传统的基于特征学习的自编码器 变种的生成式自编码器 Gen网络(对抗式生成网络) 传统自编码器 原理 类似于一个自 ...
- 『cs231n』RNN之理解LSTM网络
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...
- 『cs231n』循环神经网络RNN
循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的 ...
随机推荐
- 20165211 2017-2018-2 《Java程序设计》第5周学习总结
20165211 2017-2018-2 <Java程序设计>第5周学习总结 教材学习内容总结 本周,我学习了书本上第五.六两章的内容,以下是我整理的主要知识. 第五章 内部类与异常类 内 ...
- 強化 Python 在 Vim 裡的顏色
我習慣用 putty 連 Unix server 開 screen,再用 vim 寫 Python.這篇記錄如何改善 Python 的顏色. 啟動 256 色 terminal 首先將可用的色彩數增加 ...
- C++ 一串数字三位一节,用逗号隔开表示
#include <iostream> #include <string> #include <sstream> using namespace std; stri ...
- Eclipse给方法或者类添加自动注释
自动生成注释: 在团队开发中,注释是必不可少的,为了是自己的注释看起来更加优雅,注释的格式应该统一,我们可以使用Eclipse注释模板自动生成注释. 具体操作如下: 打开注释模板编辑窗口:Window ...
- Delphi XE5 for Android (六)
今天尝试了TTabControl的使用.在很多Android的app中,首次启动时都使用选项卡模式进行产品介绍,用户通过向左滑动,改变选项卡.在xe5下这项工作由TTabControl控件完成,如下图 ...
- 高通RFC适配RFFE-添加MIPI设备【转】
本文转载自:https://blog.csdn.net/u011212816/article/details/80828625 RF driver主要设计到的器件 1.Transceiver 2.RF ...
- POJ 1260 Pearls (斜率DP)题解
思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i => dp[j ...
- 【第三十八章】 springboot+docker(maven)
回顾上一章的整个部署过程: 使用"mvn install"进行打包jar 将jar移动到与Dockerfile文件相同的文件夹下 编写Dockerfile文件 使用"do ...
- [Shiro] - Shiro之进阶
上一个知识点ssm, 哪里需要权限,哪里写注解@RequirePermission就行. 但是,真正项目开发的时候, 这种方式就很有局限性了, 当权限配置关系发生变化, 每次都要修改代码, 编译打包重 ...
- Java8的新特性,二进制序列转十进制数字
package kata_007_二进制序列转十进制int; /** * java8 Lambda表达式转换binary序列->十进制数 */ import java.util.ArrayLis ...
