题意

如标题。

\(|s1|,|s2| \leq 500\)

分析

既然是dp问题的组合,那么考虑dp。
定义状态f(i,j)表示对第一个序列s1的前i个和第二个序列s2的前j个元素求最长上升公共子序列,并且s1的第i个元素和s2的第j个元素匹配的结果,显然,当且仅当s1[i]=s2[j]时,f(i,j)有意义。
转移方程为:
\[f(i,j)=\max\{f(i',j')|i'<i,j'<j,s2[j']<s1[i]\}+1\]
这个朴素做法的时间复杂度为\(O(n^4)\)。我们尝试优化此方程,记\(opt(j')=\max\{f(i',j')\}\),保证f(i',j')有意义。那么转移方程为:
\[f(i,j)=\max\{opt(j')|j'<j,s2[j']<s1[i]\}+1\]
事实上,只需要从小到大枚举i,然后及时更新opt,就可以将转移的复杂度降为O(n)了。这样时间复杂度为\(O(n^3)\),已经可以过了。

代码

#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#pragma GCC optimize ("O0")
using namespace std;
template<class T> inline T read(T&x)
{
    T data=0;
    int w=1;
    char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
        data=10*data+ch-'0',ch=getchar();
    return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;

const int MAXN=5e2+7;
int n,m;
int a[MAXN],b[MAXN];
int f[MAXN][MAXN];
int opt[MAXN];
int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    int T;
    read(T);
    while(T--)
    {
        memset(f,0,sizeof(f)); // edit 1
        memset(opt,0,sizeof(opt));
        read(n);
        for(int i=1;i<=n;++i)
            read(a[i]);
        read(m);
        for(int i=1;i<=m;++i)
            read(b[i]);
        int ans=0;
        for(int i=1;i<=n;++i)
            for(int j=1;j<=m;++j)
            {
                if(a[i]!=b[j])
                    continue;
                int t=0;
                for(int k=1;k<j;++k)
                    if(b[k]<a[i])
                        t=max(t,opt[k]);
                f[i][j]=t+1;
                opt[j]=max(opt[j],f[i][j]);
                ans=max(ans,f[i][j]);
            }
        printf("%d\n",ans);
        if(T) // edit 2
            puts("");
    }
//  fclose(stdin);
//  fclose(stdout);
    return 0;
}

HDU1423 Greatest Common Increasing Subsequence的更多相关文章

  1. HDU4512完美队形I && HDU1423 Greatest Common Increasing Subsequence (LCIS)

    填坑的时候又到啦,校赛因为不会LCIS所以吃了大亏,这里要补起来.LCIS就是在两个串里找最长上升子序列,相关的博客有很多,这里自己就不写那么多了. http://www.cnblogs.com/ja ...

  2. HDU1423 Greatest Common Increasing Subsequence (DP优化)

    LIS和LCS的结合. 容易写出方程,复杂度是nm2,但我们可以去掉一层没有必要的枚举,用一个变量val记录前一阶段的最优解,这样优化成nm. 1<=k<j,j增加1,k的上界也增加1,就 ...

  3. HDU1423:Greatest Common Increasing Subsequence(LICS)

    Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...

  4. Greatest Common Increasing Subsequence hdu1423

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  5. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  6. POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...

  7. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  8. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  9. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

随机推荐

  1. eclipse安装adt插件后工具栏不显示android相关图标

    到eclipse官网下载luna(开发android,推荐此版本,当前最新版4.4.2)版本的eclipse http://ftp.jaist.ac.jp/pub/eclipse/technology ...

  2. Vue.js Client-Side Storage;( Web Storage/localStorage)

    原文:https://cn.vuejs.org/v2/cookbook/client-side-storage.html LocalStorage (api) my code pen :https:/ ...

  3. Confluence 6 快捷键

    快捷键图标. 官方的下载地址为:https://atlassianblog.wpengine.com/wp-content/uploads/2018/01/keyboard-shortcuts-inf ...

  4. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  5. hdu-3980-nim博弈/sg函数

    Paint Chain Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  7. UVA-12569 Planning mobile robot on Tree (EASY Version) (BFS+状态压缩)

    题目大意:一张无向连通图,有一个机器人,若干个石头,每次移动只能移向相连的节点,并且一个节点上只能有一样且一个东西(机器人或石头),找出一种使机器人从指定位置到另一个指定位置的最小步数方案,输出移动步 ...

  8. React-Router v4.0 hashRouter使用js跳转

    React-Router v4.0上已经不推荐使用hashRouter,主推browserRouter,但是因为使用browserRouter需要服务端配合可能造成不便,有时还是需要用到hashRou ...

  9. 对mysql性能影响的几个重要参数---高性能(七)

    转载地址:https://wenku.baidu.com/view/f6bd760cb307e87101f696e3.html

  10. spring boot 学习(七)小工具篇:表单重复提交

    注解 + 拦截器:解决表单重复提交 前言 学习 Spring Boot 中,我想将我在项目中添加几个我在 SpringMVC 框架中常用的工具类(主要都是涉及到 Spring AOP 部分知识).比如 ...