人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了……

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2760

Description

Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.

Input

Input consists of multiple test cases. The first line of each test case, there is an integer number N (1<=N<=100), which is the number of the vertices. Then follows an N * N matrix, represents the directed graph. Each element of the matrix is either non-negative integer, denotes the length of the edge, or -1, which means there is no edge. At the last, the test case ends with two integer numbers S and T (0<=S, T<=N-1), that is, the starting and ending points. Process to the end of the file.

Output

For each test case, output one line, the number of the the non-overlapping shortest path that we can find at most, or "inf" (without quote), if the starting point meets with the ending.

Sample Input

4
0 1 1 -1
-1 0 1 1
-1 -1 0 1
-1 -1 -1 0
0 3
5
0 1 1 -1 -1
-1 0 1 1 -1
-1 -1 0 1 -1
-1 -1 -1 0 1
-1 -1 -1 -1 0
0 4

Sample Output

2
1

呃,题意和思路什么的直接看宝典吧:

当然啦,没必要一定像他那样ds[i]+edge[i][j]+dt[j]==ds[t]这样,我们要抓住精髓,看清本质,只要保证剌进来的边属于最短路上的边就行,

所以,只要做一次spfa,然后满足d[i]+edge[i][j]==d[j]就行。

某只A题A的神志不清的博主的心灵独白                                                                   begin

然后联想到前面那题POJ1637的构图,不难发现,在integer的情况下把edge.cap设为1,可以代表一种这条边到底走不走的意义,然后全图都设为1的话,最大流大概就是……

从source到target最多有几条不相交的简单路径可走……

嗯,如果这个图上的边全是属于最短路的边的话,那么这个最大流就是本题的答案了……诶等下,再联想到dinic的BFS过程是找层次图,而层次图从某种意义上来讲就是最短路图?

所以我们可以用一个计算层次的BFS来代替SPFA?我好想发现了什么??让我来再码一发(然而spfa本来不就是个BFS么……

然后,我立马就发现……dinic里的BFS是建立在边长默认为1的情况下的,所以我立马就放弃了我TM真是个傻子……

某只A题A的神志不清的博主的心灵独白                                                                   end

呃,先忽略我的心灵独白,看跟现在市面上比较相像的代码:

 #include<cstdio>
#include<cstring>
#include<queue>
#define MAXN 103
#define INF 0x3f3f3f3f
using namespace std;
int n,s,t;
int d[MAXN],map[MAXN][MAXN];
bool vis[MAXN];
void spfa(int st)
{
for(int i=;i<n;i++){
i==st ? d[i]= : d[i]=INF;
vis[i]=;
}
queue<int> q;
q.push(st);
vis[st]=;
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=;
for(int v=;v<n;v++)
{
if(u==v || map[u][v]==-) continue;
int tmp=d[v];
if(d[v]>d[u]+map[u][v]) d[v]=d[u]+map[u][v];
if(d[v]<tmp && !vis[v]) q.push(v),vis[v]=;
}
}
} struct Edge{
int u,v,c,f;
};
struct Dinic
{
vector<Edge> E;
vector<int> G[MAXN];
bool vis[MAXN]; //BFS使用
int lev[MAXN];//记录层次
int cur[MAXN]; //当前弧下标
void init(int n)
{
E.clear();
for(int i=;i<n;i++) G[i].clear();
}
void addedge(int from,int to,int cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
int m=E.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=;i<G[now].size();i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)//属于残存网络的边
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
int dfs(int now,int aug)//now表示当前结点,aug表示目前为止的最小残量
{
if(now==t || aug==) return aug;//aug等于0时及时退出,此时相当于断路了
int flow=,f;
for(int& i=cur[now];i<G[now].size();i++)//从上次考虑的弧开始,注意要使用引用,同时修改cur[now]
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(!aug) break;//aug等于0及时退出,当aug!=0,说明当前节点还存在另一个增广路分支
}
}
return flow;
}
int maxflow()//主过程
{
int flow=;
while(bfs())//不停地用bfs构造分层网络,然后用dfs沿着阻塞流增广
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic; int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++) for(int j=;j<n;j++) scanf("%d",&map[i][j]);
scanf("%d%d",&s,&t);
if(s==t)
{
printf("inf\n");
continue;
}
spfa(s);
dinic.init(n);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
if(i!=j && map[i][j]!=- && d[i]!=INF && d[j]!=INF && d[i]+map[i][j]==d[j]) dinic.addedge(i,j,);
printf("%d\n",dinic.maxflow());
}
}

(dinic模板的中文注释懒得去掉了,反正看起来不多,到时候忘记了过程还可以看看注释回忆回忆……)

ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]的更多相关文章

  1. ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给定一个带权有向图 G=(V, E)和源点 s.汇点 t ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  4. zoj 2760 How Many Shortest Path【最大流】

    不重叠最短路计数. 先弗洛伊德求一遍两两距离(其实spfa或者迪杰斯特拉会更快但是没必要懒得写),然后设dis为st最短距离,把满足a[s][u]+b[u][v]+a[v][t]==dis的边(u,v ...

  5. ZOJ 2760 How Many Shortest Path (不相交的最短路径个数)

    [题意]给定一个N(N<=100)个节点的有向图,求不相交的最短路径个数(两条路径没有公共边). [思路]先用Floyd求出最短路,把最短路上的边加到网络流中,这样就保证了从s->t的一个 ...

  6. ZOJ 2760 How Many Shortest Path

    题目大意:给定一个带权有向图G=(V, E)和源点s.汇点t,问s-t边不相交最短路最多有几条.(1 <= N <= 100) 题解:从源点汇点各跑一次Dij,然后对于每一条边(u,v)如 ...

  7. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  8. CF843D Dynamic Shortest Path spfa+剪枝

    考试的T3,拿暴力+剪枝卡过去了. 没想到 CF 上也能过 ~ code: #include <bits/stdc++.h> #define N 100004 #define LL lon ...

  9. ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds      Me ...

随机推荐

  1. C#------Aspose的License文件

    Aspose官网: https://docs.aspose.com/display/cellsnet/Home 下载地址: http://vdisk.weibo.com/s/uoya0tRiZNf0X ...

  2. Missing iOS Distribution signing identity

    打包上传appstore的时候报错如下: 解决方法: Download https://developer.apple.com/certificationauthority/AppleWWDRCA.c ...

  3. logback -- 配置详解 -- 一 -- <configuration>及子节点

    附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...

  4. 【AI】face_recognition

    1.pip install cmake 2.pip install boost 3.pip install dlib 4.pip install face_recognition

  5. fastcgi模式下设置php最大执行时间

    php在执行中常见错误: The FastCGI process exceeded configured request timeout: FastCGI process exceeded confi ...

  6. AutoLayout深入浅出五[UITableView动态高度]

    本文转载至 http://grayluo.github.io//WeiFocusIo/autolayout/2015/02/01/autolayout5/ 我们经常会遇到UITableViewCell ...

  7. python之SQLAlchemy ORM

    前言: 这篇博客主要介绍下SQLAlchemy及基本操作,写完后有空做个堡垒机小项目.有兴趣可看下python之数据库(mysql)操作.下篇博客整理写篇关于Web框架和django基础~~ 一.OR ...

  8. 【贪心】PAT 1033. To Fill or Not to Fill (25)

    1033. To Fill or Not to Fill (25) 时间限制 10 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 ZHANG, Gu ...

  9. Delphi XE开发 Android 开机自动启动

    https://blog.csdn.net/tanqth/article/details/74357209 Android 下的广播 在Android下,要让我们开发的APP能在开机时自动启动,必须使 ...

  10. liunx trac 邮件提示功能

    http://trac.edgewall.org/wiki/TracNotification官网上提供的方法.个人觉得不是清楚,不过还是有参考价值的.以下写下自己的添加过程,以作记录. 1.the [ ...