http://poj.org/problem?id=1191

题意:中文题。

题解:

1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的棋盘)

2.考虑如何计算方差,根据以下方差公式

我们只需算∑X 2的最小值//然后将它乘以n,减去总和的平方,除以n^2,再整体开根号就行了,化简一下的结果

3.关于棋盘的表示,我们用左上角坐标与右下角坐标,常规表示

4.关于计算优化,用sum二维前缀和。并且进行记忆化递归。

技巧:1&引用 化简代码 2 二维前缀和的预处理

坑:我在poj上搜找这题,搜chess,rectangle,cut死活找不到,组后发现是到noi的中文题qrz。。。

  +1,-1 要注意

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <math.h>
#include <string.h>
#include <string>
#include <map>
#include<stack>
#include<set>
#include<string.h>
#include<iomanip>
#define pb push_back
#define _for(i, a, b) for (int i = (a); i<(b); ++i)
#define _rep(i, a, b) for (int i = (a); i <= (b); ++i) using namespace std;
const int N =+ ;
//double num[N], price[N], ave[N];
int s[N][N];
int sum[N][N];
int res[][N][N][N][N];
int calSum(int x1, int y1, int x2, int y2) {
return sum[x2][y2] - sum[x2][y1-] - sum[x1-][y2] + sum[x1-][y1-];
}
int f(int n, int x1, int y1, int x2, int y2) {
int t, a, b, c, e, mn = 1e7;
int& ans = res[n][x1][y1][x2][y2];
if (ans != -) return ans;
if (n == ) {
t = calSum(x1, y1, x2, y2);
ans = t*t;
return ans;
}
for (a = x1; a < x2; a++) {
c = calSum(a + , y1, x2, y2);
e = calSum(x1, y1, a, y2);
t = min(c*c + f(n - , x1, y1, a, y2), e*e + f(n-,a + , y1, x2, y2));
if (mn > t)mn = t;
}
for (b = y1; b < y2; b++) {
c = calSum(x1, b+, x2, y2);
e = calSum(x1, y1, x2, b);
t = min(c*c + f(n-,x1, y1, x2, b), e*e + f(n-,x1, b + , x2, y2));
if (mn > t)mn = t;
}
ans = mn;
return ans;
}
int main() {
memset(res, -, sizeof(res));
int n;
cin >> n; _for(i,,)
for(int j=,rowsum=;j<;j++) {
cin >> s[i][j];
rowsum += s[i][j];
sum[i][j] += sum[i - ][j] + rowsum;
} double result = n*f(n, , , , ) - sum[][] * sum[][];
cout << setiosflags(ios::fixed) << setprecision() << sqrt(result / (n*n)) << endl; system("pause");
}

POJ - 1191 棋盘分割 记忆递归 搜索dp+数学的更多相关文章

  1. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  2. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  3. POJ 1191 棋盘分割(DP)

    题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...

  4. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

  5. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  6. POJ 1191棋盘分割问题

    棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...

  7. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  8. POJ 1191 棋盘分割 (区间DP,记忆化搜索)

    题面 思路:分析公式,我们可以发现平均值那一项和我们怎么分的具体方案无关,影响答案的是每个矩阵的矩阵和的平方,由于数据很小,我们可以预处理出每个矩阵的和的平方,执行状态转移. 设dp[l1][r1][ ...

  9. (中等) POJ 1191 棋盘分割,DP。

    Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

随机推荐

  1. 【Oracle】强制关闭会话

    select sid, serial# from V$session where sid in (select sid from v$LOCK where TYPE in ('TM','TX')); ...

  2. RxJava中的doOnSubscribe默认运行线程分析

    假设你对RxJava1.x还不是了解,能够參考以下文章. 1. RxJava使用介绍 [视频教程] 2. RxJava操作符   • Creating Observables(Observable的创 ...

  3. virtio-netdev 数据包的发送

    在前面几文中已经大体介绍了virtio的重要组成,包含virtio net设备的创建,vring的创建,与virtio设备的交互方式,我们就从网络数据包的发送角度来看下virtio的详细使用流程. [ ...

  4. CentOS 6.3下搭建Web服务器

    准备前的工作: 1.修改selinux配置文件(/etc/sysconfig/selinux) 关闭防火墙 (1)把SELINUX=enforcing注释掉 (2)并添加SELINUX=disable ...

  5. Synchronizing Threads and GUI in Delphi application

    Synchronizing Threads and GUI   See More About delphi multithreading tthread class user interface de ...

  6. linux 查看硬件信息

      1.查看内存槽数.那个槽位插了内存,大小是多少 dmidecode|grep -P -A5 "Memory\s+Device"|grep Size|grep -v Range ...

  7. 带有ZLIB_LIBRARY_DEBUG的FindZLIB.cmake文件

    CMake自带的FindZLIB.cmake只有ZLIB_LIBRARY,而没有ZLIB_LIBRARY_DEBUG 将下面的代码保存成FindZLIB.cmake,替换掉D:\Program Fil ...

  8. 【大数据系列】MapReduce详解

    MapReduce是hadoop中的一个计算框架,用来处理大数据.所谓大数据处理,即以价值为导向,对大数据加工,挖掘和优化等各种处理. MapReduce擅长处理大数据,这是由MapReduce的设计 ...

  9. [原]git的使用(三)---管理修改、

    上接git的使用(二) 7.管理修改 [要理解的概念]为Git跟踪并管理的是修改,而非文件 什么是修改?比如你新增了一行,这就是一个修改,删除了一行,也是一个修改,更改了某些字符,也是一个修改,删了一 ...

  10. openstack nova 用户管理

    用户管理      创建管理员用户      用法:      nova-manage user admin name [access] [secret]      其中access 和secret可 ...