pom依赖

    <properties>
<scala.version>2.11.8</scala.version>
<hadoop.version>2.7.4</hadoop.version>
<spark.version>2.1.3</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>

demo代码

package com.blaze.kafka2streaming;

import com.blaze.conf.ConfigurationManager;
import com.blaze.constant.Constants;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.Optional;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.dstream.DStream;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import scala.Tuple2; import java.util.*; /**
* create by zy 2019/3/15 9:26
* TODO: kafka2streaming示例 使用的java8的lambda表达式(idea可以alt+enter将方法转换成非lambda表达式的java代码)
*/
public class BlazeDemo {
public static void main(String[] args) {
// 构建SparkStreaming上下文
SparkConf conf = new SparkConf().setAppName("BlazeDemo").setMaster("local[2]"); // 每隔5秒钟,sparkStreaming作业就会收集最近5秒内的数据源接收过来的数据
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
//checkpoint目录
//jssc.checkpoint(ConfigurationManager.getProperty(Constants.STREAMING_CHECKPOINT_DIR));
jssc.checkpoint("/streaming_checkpoint"); // 构建kafka参数map
// 主要要放置的是连接的kafka集群的地址(broker集群的地址列表)
Map<String, Object> kafkaParams = new HashMap<>();
//Kafka服务监听端口
kafkaParams.put("bootstrap.servers", ConfigurationManager.getProperty(Constants.KAFKA_BOOTSTRAP_SERVERS));
//指定kafka输出key的数据类型及编码格式(默认为字符串类型编码格式为uft-8)
kafkaParams.put("key.deserializer", StringDeserializer.class);
//指定kafka输出value的数据类型及编码格式(默认为字符串类型编码格式为uft-8)
kafkaParams.put("value.deserializer", StringDeserializer.class);
//消费者ID,随意指定
kafkaParams.put("group.id", ConfigurationManager.getProperty(Constants.GROUP_ID));
//指定从latest(最新,其他版本的是largest这里不行)还是smallest(最早)处开始读取数据
kafkaParams.put("auto.offset.reset", "latest");
//如果true,consumer定期地往zookeeper写入每个分区的offset
kafkaParams.put("enable.auto.commit", false); // 构建topic set
String kafkaTopics = ConfigurationManager.getProperty(Constants.KAFKA_TOPICS);
String[] kafkaTopicsSplited = kafkaTopics.split(","); Collection<String> topics = new HashSet<>();
for (String kafkaTopic : kafkaTopicsSplited) {
topics.add(kafkaTopic);
} try {
// 获取kafka的数据
final JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
jssc,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)
); //获取words
//JavaDStream<String> words = stream.flatMap(s -> Arrays.asList(s.value().split(",")).iterator());
JavaDStream<String> words = stream.flatMap((FlatMapFunction<ConsumerRecord<String, String>, String>) s -> {
List<String> list = new ArrayList<>();
//todo 获取到kafka的每条数据 进行操作
System.out.print("***************************" + s.value() + "***************************");
list.add(s.value() + "23333");
return list.iterator();
});
//获取word,1格式数据
JavaPairDStream<String, Integer> wordsAndOne = words.mapToPair((PairFunction<String, String, Integer>) word -> new Tuple2<>(word, 1)); //聚合本次5s的拉取的数据
//JavaPairDStream<String, Integer> wordsCount = wordsAndOne.reduceByKey((Function2<Integer, Integer, Integer>) (a, b) -> a + b);
//wordsCount.print(); //历史累计 60秒checkpoint一次
DStream<Tuple2<String, Integer>> result = wordsAndOne.updateStateByKey(((Function2<List<Integer>, Optional<Integer>, Optional<Integer>>) (values, state) -> {
Integer updatedValue = 0;
if (state.isPresent()) {
updatedValue = Integer.parseInt(state.get().toString());
}
for (Integer value : values) {
updatedValue += value;
}
return Optional.of(updatedValue);
})).checkpoint(Durations.seconds(60)); result.print(); //开窗函数 5秒计算一次 计算前15秒的数据聚合
JavaPairDStream<String, Integer> result2 = wordsAndOne.reduceByKeyAndWindow((Function2<Integer, Integer, Integer>) (x, y) -> x + y,
Durations.seconds(15), Durations.seconds(5));
result2.print(); jssc.start();
jssc.awaitTermination();
jssc.close(); } catch (Exception e) {
e.printStackTrace();
}
} }

相关配置文件

package com.blaze.conf;

import java.io.InputStream;
import java.util.Properties; /**
* create by zy 2019/3/15 9:33
* TODO:
*/
public class ConfigurationManager {
//私有配置对象
private static Properties prop = new Properties(); /**
* 静态代码块
*/
static {
try {
//获取配置文件输入流
InputStream in = ConfigurationManager.class
.getClassLoader().getResourceAsStream("blaze.properties"); //加载配置对象
prop.load(in);
} catch (Exception e) {
e.printStackTrace();
}
} /**
* 获取指定key对应的value
*
* @param key
* @return value
*/
public static String getProperty(String key) {
return prop.getProperty(key);
} /**
* 获取整数类型的配置项
*
* @param key
* @return value
*/
public static Integer getInteger(String key) {
String value = getProperty(key);
try {
return Integer.valueOf(value);
} catch (Exception e) {
e.printStackTrace();
}
return 0;
} /**
* 获取布尔类型的配置项
*
* @param key
* @return value
*/
public static Boolean getBoolean(String key) {
String value = getProperty(key);
try {
return Boolean.valueOf(value);
} catch (Exception e) {
e.printStackTrace();
}
return false;
} /**
* 获取Long类型的配置项
*
* @param key
* @return
*/
public static Long getLong(String key) {
String value = getProperty(key);
try {
return Long.valueOf(value);
} catch (Exception e) {
e.printStackTrace();
}
return 0L;
}
}
package com.blaze.constant;

/**
* create by zy 2019/3/15 9:31
* TODO:常量接口
*/
public interface Constants { String GROUP_ID = "group.id";
String KAFKA_TOPICS = "kafka.topics";
String KAFKA_BOOTSTRAP_SERVERS = "bootstrap.servers";
String STREAMING_CHECKPOINT_DIR = "streaming.checkpoint.dir"; }

blaze.properties

bootstrap.servers=192.168.44.41:9092,192.168.44.42:9092,192.168.44.43:9092
kafka.topics=sparkDemo
group.id=blaze
streaming.checkpoint.dir=hdfs://192.168.44.41:9000/streaming_checkpoint

Spark之 Spark Streaming整合kafka(Java实现版本)的更多相关文章

  1. Spark之 Spark Streaming整合kafka(并演示reduceByKeyAndWindow、updateStateByKey算子使用)

    Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <grou ...

  2. Spark学习之路(十六)—— Spark Streaming 整合 Kafka

    一.版本说明 Spark针对Kafka的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8和spark-streaming-kafka-0-10,其主要区别如下:   s ...

  3. Spark 系列(十六)—— Spark Streaming 整合 Kafka

    一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下 ...

  4. spark streaming 整合 kafka(一)

    转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合 ...

  5. spark streaming 整合kafka(二)

    转载:https://www.iteblog.com/archives/1326.html 和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的 ...

  6. spark streaming整合kafka

    版本说明:spark:2.2.0: kafka:0.10.0.0 object StreamingDemo { def main(args: Array[String]): Unit = { Logg ...

  7. Spark Streaming 整合 Kafka

    一:通过设置检查点,实现单词计数的累加功能 object StatefulKafkaWCnt { /** * 第一个参数:聚合的key,就是单词 * 第二个参数:当前批次产生批次该单词在每一个分区出现 ...

  8. spark streaming消费kafka: Java .lang.IllegalStateException: No current assignment for partition

    1 原因是: 多个相同的Spark Streaming同时消费同一个topic,导致的offset问题.关掉多余的任务,就ok了.

  9. Spark_Streaming整合Kafka

    Spark Streaming 整合 Kafka ​ 一.版本说明二.项目依赖三.整合Kafka        3.1 ConsumerRecord        3.2 生产者属性        3 ...

随机推荐

  1. PHP中header的用法总结

    来源 :http://blog.sina.com.cn/s/blog_7298f36f01011dxv.html header的用法 header()函数的作用是:发送一个原始 HTTP 标头[Htt ...

  2. Delphi调用网页美化SQL

    百度搜索在线美化SQL语句的网站,为了加快解析速度,这里已下载到本地. 然后delphi用webbrowse载入本地的网页,然后把sql传进去,美化后取出来. 效果如下图 点击下载源码

  3. Unigui的Grid添加汇总栏

  4. 实验二:C基本数据类型及运算

    2.1  建议使用double型 #include<stdio.h> int main(){ double x,y,z,s,p,a; scanf("%lf%lf%lf" ...

  5. Python 天气预报+微信

    """ Description: 需要提供以下三个信息,在申请到的微信企业号当中可以找到 agentid corpid corpsecret Author:Nod Dat ...

  6. 1053 Path of Equal Weight (30 分)

    Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weig ...

  7. Goroutine(协程)为何能处理大并发?

    简单来说:协程十分轻量,可以在一个进程中执行有数以十万计的协程,依旧保持高性能. 进程.线程.协程的关系和区别: 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自己独 ...

  8. Noip知识点备考

    作为一个oier,适当的整理是有必要的.蒟蒻根据自己的理解,筛选出考noip应当掌握的知识点.可能后期还有解题思路和模板,先挖个坑慢慢补呗. 60级张炳琪Noip知识点总结 可能是本人比较弱,写的内容 ...

  9. jQuery更新

    jQuery jQuery介绍 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方便地进行 ...

  10. linux虚拟机Ubuntu命令配置

    # netstat -ntl  # 查看端口号,改成 0.0.0.0才能进行远程访问 # sudo service redis-server restart  # 修改后需要重启服务 python2和 ...