fhq treap

碎碎念

我咋感觉合并这么像左偏树呢

ps:难道你们的treap都是小头堆的吗

fhq真的是神人

现在看以前学的splay是有点恶心,尤其是压行压不过fhqtreap

点一下

fhq treap主要操作就俩

拆(merge)和合(split)

其他操作都是基于这俩操作(拆拆合合,合拆合拆,拆了又和,合了又拆)

合并操作merge

把两颗树合并成一颗

这里的两颗树x,y,满足x树小于y树

因为要保证堆的性质

	if(!x||!y) return x+y;//必有一颗为空,所以直接返回那颗不空树即可
if(pri[x]<pri[y]) {//这里x为根,因为x树<y树,所以y一定在x的右孩子中
ch[x][1]=merge(ch[x][1],y);
pushup(x);//更新size
return x;
} else {//类似的,自己想
ch[y][0]=merge(x,ch[y][0]);//这里的merge顺序千万不要颠倒,因为要x树<y树
pushup(y);
return y;
}
}

拆分操作split

以一个基准数拆分

不太会说,不说了,自己去领悟吧

其他操作看这里

注意!!!

k_th的时候一定要记得去减去左边的size

模板

#include <iostream>
#include <ctime>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#define FOR(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
const int maxn=100007;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int ch[maxn][2],siz[maxn],val[maxn],pri[maxn],cnt;
void pushup(int x) {
siz[x]=1+siz[ch[x][0]]+siz[ch[x][1]];
}
int make_edge(int x) {
val[++cnt]=x,siz[cnt]=1,pri[cnt]=rand();
return cnt;
}
int merge(int x,int y) {
if(!x||!y) return x+y;
if(pri[x]<pri[y]) {
ch[x][1]=merge(ch[x][1],y);
pushup(x);
return x;
} else {
ch[y][0]=merge(x,ch[y][0]);
pushup(y);
return y;
}
}
void split(int now,int k,int &x,int &y) {
if(!now) x=y=0;
else {
if(val[now]<=k)
x=now,split(ch[now][1],k,ch[x][1],y);
else
y=now,split(ch[now][0],k,x,ch[y][0]);
pushup(now);
}
}
int k_th(int now,int k) {
while(233) {
if(k==siz[ch[now][0]]+1) return now;
if(k<=siz[ch[now][0]]) now=ch[now][0];
else k-=siz[ch[now][0]]+1,now=ch[now][1];
}
}
int main() {
int n=read(),rt=0;
FOR(i,1,n) {
int opt=read(),a=read(),x,y,z;
if(opt==1){
split(rt,a,x,y);
rt=merge(merge(x,make_edge(a)),y);
} else if(opt==2) {
split(rt,a,x,z);
split(x,a-1,x,y);
y=merge(ch[y][0],ch[y][1]);
rt=merge(merge(x,y),z);
} else if(opt==3) {
split(rt,a-1,x,y);
printf("%d\n",siz[x]+1);
rt=merge(x,y);
} else if(opt==4) {
printf("%d\n",val[k_th(rt,a)]);
} else if(opt==5) {
split(rt,a-1,x,y);
printf("%d\n",val[k_th(x,siz[x])]);
rt=merge(x,y);
} else if(opt==6) {
split(rt,a,x,y);
printf("%d\n",val[k_th(y,1)]);
rt=merge(x,y);
}
}
return 0;
}

fhq treap抄袭笔记的更多相关文章

  1. fhq treap 学习笔记

    序 今天心血来潮,来学习一下fhq treap(其实原因是本校有个OIer名叫fh,当然不是我) 简介 fhq treap 学名好像是"非旋转式treap及可持久化"...听上去怪 ...

  2. FHQ treap学习(复习)笔记

    .....好吧....最后一篇学习笔记的flag它倒了..... 好吧,这篇笔记也鸽了好久好久了... 比赛前刷模板,才想着还是补个坑吧... FHQ,这个神仙(范浩强大佬),发明了这个神仙的数据结构 ...

  3. 「FHQ Treap」学习笔记

    话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...

  4. 「学习笔记」 FHQ Treap

    FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...

  5. Fhq Treap [FhqTreap 学习笔记]

    众所周知 Fhq Treap 是 fhq 神仙研究出来的平衡树- 具体实现 每个点实现一个 \(\text{rnd}\) 表示 rand 的值 为什么要 rand 呢 是为了保证树高为 \(\log ...

  6. fhq treap最终模板

    新学习了fhq treap,厉害了 先贴个神犇的版, from memphis /* Treap[Merge,Split] by Memphis */ #include<cstdio> # ...

  7. NOI 2002 营业额统计 (splay or fhq treap)

    Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每 ...

  8. 【POJ2761】【fhq treap】A Simple Problem with Integers

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  9. 【fhq Treap】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)

    1500: [NOI2005]维修数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 15112  Solved: 4996[Submit][Statu ...

随机推荐

  1. 使用GIT SUBTREE集成项目到子目录(转)

    原文:http://aoxuis.me/post/2013-08-06-git-subtree 使用场景 例如,在项目Game中有一个子目录AI.Game和AI分别是一个独立的git项目,可以分开维护 ...

  2. GDB常用命令使用说明(一)

    本文由霸气的菠萝原创,转载请注明出处:http://www.cnblogs.com/xsln/p/gdb_instructions1.html 全部关于gdb的文章索引请点这里 GDB(GNU Deb ...

  3. 地理位置geo处理之mysql函数

    目前越来越多的业务都会基于LBS,附近的人,外卖位置,附近商家等等,现就讨论离我最近这一业务场景的解决方案. 原文:https://www.jianshu.com/p/455d0468f6d4 目前已 ...

  4. windows server r2 搭建 ftp服务器

    1:安装ftp服务器 开始>管理工具>服务器管理器>打开服务器管理器,找到添加角色,然后点击,弹出添加角色对话框,选择下一步>选择Web服务器(IIS),然后选择FTP服务,直 ...

  5. Session实例

    Session常用方法(一) session对象用来保存一些在与每个用户回话期间需要保存的数据信息,这样就方便了回话期间的一些处理程序.如可以用session变量记住用户的用户名,以后就不必在其他的网 ...

  6. 编译错误 ----- /usr/bin/ld: cannot find -lc

    yum install glibc-static glib-static是Gcc链接时使用到的库.

  7. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  8. [LeetCode] 285. Inorder Successor in BST_Medium tag: Inorder Traversal

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. No ...

  9. redis error It was not possible to connect to the redis server(s); to create a disconnected multiplexer, disable AbortOnConnectFail. SocketFailure on PING

    应用redis出现如下错误 It was not possible to connect to the redis server(s); to create a disconnected multip ...

  10. vue性能优化1--懒加载

    懒加载也叫延迟加载,即在需要的时候进行加载.随用随载.为什么需要懒加载?像vue这种单页面应用,如果没有应用懒加载,运用webpack打包后的文件将会异常的大,造成进入首页时,需要加载的内容过多,时间 ...