第一步,自身的业务场景:

在我日常做的项目中,目前涉及了以下这些业务场景:

场景一: 比如分配任务场景。在这个场景中,由于是公司的业务后台系统,主要是用于审核人员的审核工作,并发量并不是很高,而且任务的分配规则设计成了通过审核人员每次主动的请求拉取,然后服务端从任务池中随机的选取任务进行分配。这个场景看到这里你会觉得比较单一,但是实际的分配过程中,由于涉及到了按用户聚类的问题,所以要比我描述的复杂,但是这里为了说明问题,大家可以把问题简单化理解。那么在使用过程中,主要是为了避免同一个任务同时被两个审核人员获取到的问题。我最终使用了基于数据库资源表的分布式锁来解决的问题。

场景二: 比如支付场景。在这个场景中,我提供给用户三个用于保护用户隐私的手机号码(这些号码是从运营商处获取的,和真实手机号码看起来是一样的),让用户选择其中一个进行购买,用户购买付款后,我需要将用户选择的号码分配给用户使用,同时也要将没有选择的释放掉。在这个过程中,给用户筛选的号码要在一定时间内(用户筛选正常时间范围内)让当前用户对这个产品具有独占性,以便保证付款后是100%可以拿到;同时由于产品资源池的资源有限,还要保持资源的流动性,即不能让资源长时间被某个用户占用着。对于服务的设计目标,一期项目上线的时候至少能够支持峰值qps为300的请求,同时在设计的过程中要考虑到用户体验的问题。我最终使用了memecahed的add()方法和基于数据库资源表的分布式锁来解决的问题。

场景三: 我有一个数据服务,每天调用量在3亿,每天按86400秒计算的qps在4000左右,由于服务的白天调用量要明显高于晚上,所以白天下午的峰值qps达到6000的,一共有4台服务器,单台qps要能达到3000以上。我最终使用了redis的setnx()和expire()的分布式锁解决的问题。

       场景四:场景一和场景二的升级版。在这个场景中,不涉及支付。但是由于资源分配一次过程中,需要保持涉及一致性的地方增加,而且一期的设计目标要达到峰值qps500,所以需要我们对场景进一步的优化。我最终使用了redis的setnx()、expire()和基于数据库表的分布式锁来解决的问题。

看到这里,不管你觉得我提出的业务场景qps是否足够大,都希望你能继续看下去,因为无论你身处一个什么样的公司,最开始的工作可能都需要从最简单的做起。不要提阿里和腾讯的业务场景qps如何大,因为在这样的大场景中你未必能亲自参与项目,亲自参与项目未必能是核心的设计者,是核心的设计者未必能独自设计。如果能真能满足以上三条,关闭页面可以不看啦,如果不是的话,建议还是看完,我有说的不足的地方欢迎提出建议,我说的好的地方,也希望给我点个赞或者评论一下,算是对我最大的鼓励哈。

  第二步,分布式锁的解决方式:

1. 首先明确一点,有人可能会问是否可以考虑采用ReentrantLock来实现,但是实际上去实现的时候是有问题的,ReentrantLock的lock和unlock要求必须是在同一线程进行,而分布式应用中,lock和unlock是两次不相关的请求,因此肯定不是同一线程,因此导致无法使用ReentrantLock。

2. 基于数据库表做乐观锁,用于分布式锁。

3. 使用memcached的add()方法,用于分布式锁。

4. 使用memcached的cas()方法,用于分布式锁。(不常用)

5. 使用redis的setnx()、expire()方法,用于分布式锁。

6. 使用redis的setnx()、get()、getset()方法,用于分布式锁。

7. 使用redis的watch、multi、exec命令,用于分布式锁。(不常用)

8. 使用zookeeper,用于分布式锁。(不常用)

      第三步,基于数据库资源表做乐观锁,用于分布式锁:

1. 首先说明乐观锁的含义:

大多数是基于数据版本(version)的记录机制实现的。何谓数据版本号?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表添加一个 “version”字段来实现读取出数据时,将此版本号一同读出,之后更新时,对此版本号加1。

在更新过程中,会对版本号进行比较,如果是一致的,没有发生改变,则会成功执行本次操作;如果版本号不一致,则会更新失败。

2. 对乐观锁的含义有了一定的了解后,结合具体的例子,我们来推演下我们应该怎么处理:

(1). 假设我们有一张资源表,如下图所示: t_resource , 其中有6个字段id, resoource,  state, add_time, update_time, version,分别表示表主键、资源、分配状态(1未分配  2已分配)、资源创建时间、资源更新时间、资源数据版本号。

(4). 假设我们现在我们对id=5780这条数据进行分配,那么非分布式场景的情况下,我们一般先查询出来state=1(未分配)的数据,然后从其中选取一条数据可以通过以下语句进行,如果可以更新成功,那么就说明已经占用了这个资源

update t_resource set state=2 where state=1 and id=5780。

(5). 如果在分布式场景中,由于数据库的update操作是原子是原子的,其实上边这条语句理论上也没有问题,但是这条语句如果在典型的“ABA”情况下,我们是无法感知的。有人可能会问什么是“ABA”问题呢?大家可以网上搜索一下,这里我说简单一点就是,如果在你第一次select和第二次update过程中,由于两次操作是非原子的,所以这过程中,如果有一个线程,先是占用了资源(state=2),然后又释放了资源(state=1),实际上最后你执行update操作的时候,是无法知道这个资源发生过变化的。也许你会说这个在你说的场景中应该也还好吧,但是在实际的使用过程中,比如银行账户存款或者扣款的过程中,这种情况是比较恐怖的。

(6). 那么如果使用乐观锁我们如何解决上边的问题呢?

a. 先执行select操作查询当前数据的数据版本号,比如当前数据版本号是26:

select id, resource, state,version from t_resource  where state=1 and id=5780;

b. 执行更新操作:

update t_resoure set state=2, version=27, update_time=now() where resource=xxxxxx and state=1 and version=26

c. 如果上述update语句真正更新影响到了一行数据,那就说明占位成功。如果没有更新影响到一行数据,则说明这个资源已经被别人占位了。

3. 通过2中的讲解,相信大家已经对如何基于数据库表做乐观锁有有了一定的了解了,但是这里还是需要说明一下基于数据库表做乐观锁的一些缺点:

(1). 这种操作方式,使原本一次的update操作,必须变为2次操作: select版本号一次;update一次。增加了数据库操作的次数。

(2). 如果业务场景中的一次业务流程中,多个资源都需要用保证数据一致性,那么如果全部使用基于数据库资源表的乐观锁,就要让每个资源都有一张资源表,这个在实际使用场景中肯定是无法满足的。而且这些都基于数据库操作,在高并发的要求下,对数据库连接的开销一定是无法忍受的。

(3). 乐观锁机制往往基于系统中的数据存储逻辑,因此可能会造成脏数据被更新到数据库中。在系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整,如将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途径,而不是将数据库表直接对外公开。

4. 讲了乐观锁的实现方式和缺点,是不是会觉得不敢使用乐观锁了呢???当然不是,在文章开头我自己的业务场景中,场景1和场景2的一部分都使用了基于数据库资源表的乐观锁,已经很好的解决了线上问题。所以大家要根据的具体业务场景选择技术方案,并不是随便找一个足够复杂、足够新潮的技术方案来解决业务问题就是好方案?!比如,如果在我的场景一中,我使用zookeeper做锁,可以这么做,但是真的有必要吗???答案觉得是没有必要的!!!

      第四步,使用memcached的add()方法,用于分布式锁:

      对于使用memcached的add()方法做分布式锁,这个在互联网公司是一种比较常见的方式,而且基本上可以解决自己手头上的大部分应用场景。在使用这个方法之前,只要能搞明白memcached的add()和set()的区别,并且知道为什么能用add()方法做分布式锁就好。如果还不知道add()和set()方法,请直接百度吧,这个需要自己了解一下。

我在这里想说明的是另外一个问题,人们在关注分布式锁设计的好坏时,还会重点关注这样一个问题,那就是是否可以避免死锁问题???!!!

      如果使用memcached的add()命令对资源占位成功了,那么是不是就完事儿了呢?当然不是!我们需要在add()的使用指定当前添加的这个key的有效时间,如果不指定有效时间,正常情况下,你可以在执行完自己的业务后,使用delete方法将这个key删除掉,也就是释放了占用的资源。但是,如果在占位成功后,memecached或者自己的业务服务器发生宕机了,那么这个资源将无法得到释放。所以通过对key设置超时时间,即便发生了宕机的情况,也不会将资源一直占用,可以避免死锁的问题。

第五步,使用memcached的cas()方法,用于分布式锁:

下篇文章我们再细说!

      第六步,使用redis的setnx()、expire()方法,用于分布式锁:

      对于使用redis的setnx()、expire()来实现分布式锁,这个方案相对于memcached()的add()方案,redis占优势的是,其支持的数据类型更多,而memcached只支持String一种数据类型。除此之外,无论是从性能上来说,还是操作方便性来说,其实都没有太多的差异,完全看你的选择,比如公司中用哪个比较多,你就可以用哪个。

首先说明一下setnx()命令,setnx的含义就是SET if Not Exists,其主要有两个参数 setnx(key, value)。该方法是原子的,如果key不存在,则设置当前key成功,返回1;如果当前key已经存在,则设置当前key失败,返回0。但是要注意的是setnx命令不能设置key的超时时间,只能通过expire()来对key设置。

具体的使用步骤如下:

1. setnx(lockkey, 1)  如果返回0,则说明占位失败;如果返回1,则说明占位成功

2. expire()命令对lockkey设置超时时间,为的是避免死锁问题。

3. 执行完业务代码后,可以通过delete命令删除key。

这个方案其实是可以解决日常工作中的需求的,但从技术方案的探讨上来说,可能还有一些可以完善的地方。比如,如果在第一步setnx执行成功后,在expire()命令执行成功前,发生了宕机的现象,那么就依然会出现死锁的问题,所以如果要对其进行完善的话,可以使用redis的setnx()、get()和getset()方法来实现分布式锁。   

      第七步,使用redis的setnx()、get()、getset()方法,用于分布式锁:

      这个方案的背景主要是在setnx()和expire()的方案上针对可能存在的死锁问题,做了一版优化。

那么先说明一下这三个命令,对于setnx()和get()这两个命令,相信不用再多说什么。那么getset()命令?这个命令主要有两个参数 getset(key,newValue)。该方法是原子的,对key设置newValue这个值,并且返回key原来的旧值。假设key原来是不存在的,那么多次执行这个命令,会出现下边的效果:

1. getset(key, “value1″)  返回nil   此时key的值会被设置为value1

2. getset(key, “value2″)  返回value1   此时key的值会被设置为value2

3. 依次类推!

介绍完要使用的命令后,具体的使用步骤如下:

1. setnx(lockkey, 当前时间+过期超时时间) ,如果返回1,则获取锁成功;如果返回0则没有获取到锁,转向2。

2. get(lockkey)获取值oldExpireTime ,并将这个value值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向3。

3. 计算newExpireTime=当前时间+过期超时时间,然后getset(lockkey, newExpireTime) 会返回当前lockkey的值currentExpireTime。

4. 判断currentExpireTime与oldExpireTime 是否相等,如果相等,说明当前getset设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。

5. 在获取到锁之后,当前线程可以开始自己的业务处理,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行delete释放锁;如果大于锁设置的超时时间,则不需要再锁进行处理。

      第八步,使用redis的watch、multi、exec命令,用于分布式锁:

下篇文章我们再细说!

      第九步,使用zookeeper,用于分布式锁:

下篇文章我们再细说!

第十步,总结:

综上,关于分布式锁的第一篇文章我就写到这儿了,在文章中主要说明了日常项目中会比较常用到四种方案,大家掌握了这四种方案,其实在日常的工作中就可以解决很多业务场景下的分布式锁的问题。从文章开头我自己的实际使用中,也可以看到,这么说完全是有一定的依据。对于另外那三种方案,我会在下一篇关于分布式锁的文章中,和大家再探讨一下。

 常用的四种方案:

1. 基于数据库表做乐观锁,用于分布式锁。

2. 使用memcached的add()方法,用于分布式锁。

3. 使用redis的setnx()、expire()方法,用于分布式锁。

4. 使用redis的setnx()、get()、getset()方法,用于分布式锁。

不常用但是可以用于技术方案探讨的:

1. 使用memcached的cas()方法,用于分布式锁。

2. 使用redis的watch、multi、exec命令,用于分布式锁。

3. 使用zookeeper,用于分布式锁。

java 分布式锁总结的更多相关文章

  1. Java分布式锁之数据库实现

    之前的文章<Java分布式锁实现>中列举了分布式锁的3种实现方式,分别是基于数据库实现,基于缓存实现和基于zookeeper实现.三种实现方式各有可取之处,本篇文章就详细讲解一下Java分 ...

  2. Java分布式锁之数据库方式实现

    之前的文章<Java分布式锁实现>中列举了分布式锁的3种实现方式,分别是基于数据库实现,基于缓存实现和基于zookeeper实现.三种实现方式各有可取之处,本篇文章就详细讲解一下Java分 ...

  3. Java分布式锁实现详解

    在进行大型网站技术架构设计以及业务实现的过程中,多少都会遇到需要使用分布式锁的情况.那么问题也就接踵而至,哪种分布式锁更适合我们的项目? 下面就这个问题,我做了一些分析: 分布式锁现状: 目前几乎很多 ...

  4. Java分布式锁,搞懂分布式锁实现看这篇文章就对了

    随着微处理机技术的发展,人们只需花几百美元就能买到一个CPU芯片,这个芯片每秒钟执行的指令比80年代最大的大型机的处理机每秒钟所执行的指令还多.如果你愿意付出两倍的价钱,将得到同样的CPU,但它却以更 ...

  5. Java分布式锁看这篇就够了

    ### 什么是锁? 在单进程的系统中,当存在多个线程可以同时改变某个变量(可变共享变量)时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行消除并发修改变量. 而同步的本质是通过锁来实现的 ...

  6. Java分布式锁

    分布式锁简述 在单机时代,虽然不存在分布式锁,但也会面临资源互斥的情况,只不过在单机的情况下,如果有多个线程要同时访问某个共享资源的时候,我们可以采用线程间加锁的机制,即当某个线程获取到这个资源后,就 ...

  7. Java分布式锁的三种实现方案(redis)

    方案一:数据库乐观锁 乐观锁通常实现基于数据版本(version)的记录机制实现的,比如有一张红包表(t_bonus),有一个字段(left_count)记录礼物的剩余个数,用户每领取一个奖品,对应的 ...

  8. java 分布式锁 -图解- 秒懂

    目录 写在前面 1.1. 分布式锁 简介 1.1.1. 图解:公平锁和可重入锁 模型 1.1.2. 图解: zookeeper分布式锁的原理 1.1.3. 分布式锁的基本流程 1.1.4. 加锁的实现 ...

  9. java 分布式锁

    转自:http://www.hollischuang.com/archives/1716 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CA ...

  10. Java分布式锁三种实现方案

    方案一:数据库乐观锁 乐观锁通常实现基于数据版本(version)的记录机制实现的,比如有一张红包表(t_bonus),有一个字段(left_count)记录礼物的剩余个数,用户每领取一个奖品,对应的 ...

随机推荐

  1. mybatis generator(MyBatis的逆向工程)

    1创建数据表 如图所示:我的是在text数据库中创建了一个Student表,字段有id(int),   name(varchar),     age(int),    score(int) 2创建项目 ...

  2. Linux软硬连接

     曾经对软硬连接一直搞不明白,关键是怕操作错误. 硬链接不能跨区实现连接,硬链接是对原始文件的镜像,同一个inode,软连接是快捷方式,inode保存的是快捷方式的.原始文件删除,导致软连接文件无效. ...

  3. (原)SphereFace及其pytorch代码

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...

  4. ubuntu下安装万能五笔

    之前一直习惯了万能五笔输入法,使用Ubuntu12.04安装wnwb 在网络上搜索了一下并没有找到可 以在ibus下直接使用万能五笔的方法,于是想自己动手解决这个问题, 参考别人之前做的万能五笔For ...

  5. iOS 常用的几个math函数

    1.取整数 double ceil (double); 取上整 double floor (double); 取下整 2.绝对值 double fabs (double);求绝对值 double ca ...

  6. iOS 性能调优

    1.内存空间的划分: 我们知道,一个进程占用的内存空间,包含5种不同的数据区:(1)BSS段:通常是存放未初始化的全局变量:(2)数据段:通常是存放已初始化的全局变量.(3)代码段:通常是存放程序执行 ...

  7. windows下安装phpredis模块 (转)

    1.下载: http://pecl.php.net/package/redis/2.2.7/windows 2.下载后 由于里面有两个模块分别是vc6,vc9编译的,我们需要知道我们的Php是vc6还 ...

  8. WCF异步调用

    添加引用服务--高级--选中 生产异步操作 服务端接口操作 [OperationContract]int Add(int a, int b); 客户端: 引用服务:在引用服务时,左下角点击“高级”按钮 ...

  9. golang 学习笔记 ---内存分配与管理

    Go语言——内存管理 参考: 图解 TCMalloc Golang 内存管理 Go 内存管理 问题 内存碎片:避免内存碎片,提高内存利用率. 多线程:稳定性,效率问题. 内存分配   内存划分 are ...

  10. Failed to resolve: 之一

    摘要:编译不通过提示错误如下:gradle文件里边对应:解决方案:在gradle文件里边加上.+,解决后gradle文件如下图所示:然后编译就能通过. 解决方案: 在gradle文件里边加上.+,解决 ...