1. 究竟是怎么运行的?

很多的博客里大量的讲了什么是RDD, Dependency, Shuffle.......但是究竟那些Executor是怎么运行你提交的代码段的?
下面是一个日志分析的例子,来自Spark的example
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("Log Query")
val sc = new SparkContext(sparkConf)
val dataSet =
if (args.length == ) sc.textFile(args()) else sc.parallelize(exampleApacheLogs)
// scalastyle:off
val apacheLogRegex =
"""^([\d.]+) (\S+) (\S+)
([\w\d:/]+\s[+\-]\d4)
"(.+?)" (\d{}) ([\d\-]+) "([^"]+)" "([^"]+)".*""".r
// scalastyle:on
/** Tracks the total query count and number of aggregate bytes for a particular group. */
class Stats(val count: Int, val numBytes: Int) extends Serializable {
def merge(other: Stats): Stats = {
new Stats(count + other.count, numBytes + other.numBytes)
}
override def toString: String = "bytes=%s\tn=%s".format(numBytes, count)
} def extractKey(line: String): (String, String, String) = {
apacheLogRegex.findFirstIn(line) match {
case Some(apacheLogRegex(ip, _, user, dateTime, query, status, bytes, referer, ua)) =>
if (user != "\"-\"") (ip, user, query)
else (null, null, null)
case _ => (null, null, null)
}
} def extractStats(line: String): Stats = {
apacheLogRegex.findFirstIn(line) match {
case Some(apacheLogRegex(ip, _, user, dateTime, query, status, bytes, referer, ua)) =>
new Stats(, bytes.toInt)
case _ => new Stats(, )
}
} dataSet.map(line => (extractKey(line), extractStats(line)))
.reduceByKey((c, d) => c.merge(d))
.collect().foreach{
case (user, query) => println("%s\t%s".format(user, query))} sc.stop()
}
在map的RDD算子里,自定义了extractKey, extractStats函数,而在reduceByKey的RDD又自定义了一个相同的key的merge函数
这些函数是如何被传递到executor里并且进行运算的呢?

1.1 RDD,ShuffleDependency

在前面的博文(Executor上是如何launch task的)中,已经讨论过如何获取到Driver的RDD, Dependency, 那么RDD如何能够运行这些函数呢?
 
Execute获取的DAG里提交的ShuffleMapTask是在TaskDecription中serializedTask中反序列化出来
ShuffleMapTask的RunTask的方法
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
writer.stop(success = true).get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}
看到了通过shufflewrite去写迭代的rdd数据

1.1.1 ShuffleWrite

ShuffleWrite的构建是通过shuffleManager来获取的,在SortShuffleManager.scala中
/** Get a writer for a given partition. Called on executors by map tasks. */
override def getWriter[K, V](
handle: ShuffleHandle,
mapId: Int,
context: TaskContext): ShuffleWriter[K, V] = {
numMapsForShuffle.putIfAbsent(
handle.shuffleId, handle.asInstanceOf[BaseShuffleHandle[_, _, _]].numMaps)
val env = SparkEnv.get
handle match {
case unsafeShuffleHandle: SerializedShuffleHandle[K @unchecked, V @unchecked] =>
new UnsafeShuffleWriter(
env.blockManager,
shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
context.taskMemoryManager(),
unsafeShuffleHandle,
mapId,
context,
env.conf)
case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K @unchecked, V @unchecked] =>
new BypassMergeSortShuffleWriter(
env.blockManager,
shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
bypassMergeSortHandle,
mapId,
context,
env.conf)
case other: BaseShuffleHandle[K @unchecked, V @unchecked, _] =>
new SortShuffleWriter(shuffleBlockResolver, other, mapId, context)
}
}
在ShuffleDependency中保存着ShuffleHandle, ShuffleHandle中也保存着Dependency
  1. 在Driver DAG 中registerShuffle中dependency决定着使用什么ShuffleHandle
  2. 在Executor的shuffleManager中是由dependency中的ShuffleHandle来决定什么ShuffleWrite

题外话:Dependency本身就可以直接决定shuffleWrite,整个ShuffleHandle只是在SortShuffleWriter的时候用于获取了dependency, Executor端SortShuffleWriter本身就能获取到Dependency,ShuffleHandle感觉就是一个鸡肋。

 
在日志分析的这个代码案例中,返回的是SortShuffleWriter

1.1.2 RDD.iterator

在ShuffleMapTask中的runTask方法
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) 

writer在调用的write函数中传递了rdd.iterator,也就是通过rdd构造的迭代器

final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
getOrCompute(split, context)
} else {
computeOrReadCheckpoint(split, context)
}
}

Map的rdd的构造迭代器MapPartitionsRDD,MapPartitionsRDD并没有设置缓存或者存储,StorageLevel是NONE,调用computerOrReadCheckpoint方法

/**
* Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
*/
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
{
if (isCheckpointedAndMaterialized) {
firstParent[T].iterator(split, context)
} else {
compute(split, context)
}
}

也没有做过checkpointed ,调用compute方法

override def compute(split: Partition, context: TaskContext): Iterator[U] =
f(context, split.index, firstParent[T].iterator(split, context))

先来看fistParent

/** Returns the first parent RDD */
protected[spark] def firstParent[U: ClassTag]: RDD[U] = {
dependencies.head.rdd.asInstanceOf[RDD[U]]
}

每个RDD都会保存一个Dependency的数组,Dependency里有RDD的属性,而Dependency数组的头一个dependency的RDD,就是处理数据的首个RDD,也就是如下的代码里的dataSet

val dataSet =
if (args.length == ) sc.textFile(args()) else sc.parallelize(exampleApacheLogs)
我们以parallelize为例子,所对应的RDD就是ParallelCollectionRDD回到
firstParent[T].iterator(split, context))  

iterator函数就是前面的RDD函数,StorageLevel依然是NONE,也没有做过checkpointed,依然还是调用compute的方法

override def compute(s: Partition, context: TaskContext): Iterator[T] = {
new InterruptibleIterator(context, s.asInstanceOf[ParallelCollectionPartition[T]].iterator)
}

生成了一个InterruptibleIterator迭代器,迭代器本质只是一个代理的迭代器

@DeveloperApi
class InterruptibleIterator[+T](val context: TaskContext, val delegate: Iterator[T])
extends Iterator[T] { def hasNext: Boolean = {
// TODO(aarondav/rxin): Check Thread.interrupted instead of context.interrupted if interrupt
// is allowed. The assumption is that Thread.interrupted does not have a memory fence in read
// (just a volatile field in C), while context.interrupted is a volatile in the JVM, which
// introduces an expensive read fence.
if (context.isInterrupted) {
throw new TaskKilledException
} else {
delegate.hasNext
}
} def next(): T = delegate.next()
}

当发现有打断命令的时候,直接抛出TaskKilledException的异常,其所代理的iterator 是

s.asInstanceOf[ParallelCollectionPartition[T]].iterator 

ParallelCollectionRDD的Partition就是ParallelCollectionPartition

private[spark] class ParallelCollectionPartition[T: ClassTag](
var rddId: Long,
var slice: Int,
var values: Seq[T]
) extends Partition with Serializable { def iterator: Iterator[T] = values.iterator
.......
}

Values是需要支持序列化的数组,在Driver端ParallelCollectionRDD中将数据Data进行了ParallelCollectionPartition的分片,分片的数据Values被保存在了ParallelCollectionPartition里,数据并没有被保存在ParallelCollectionRDD中,所以进行计算的数据并不是通过RDD传递过来的,而是通过反序列化ShuffleMapTask获得的,走的是直接的rpc通道

private[spark] class ShuffleMapTask(
stageId: Int,
stageAttemptId: Int,
taskBinary: Broadcast[Array[Byte]],
partition: Partition,
@transient private var locs: Seq[TaskLocation],
metrics: TaskMetrics,
localProperties: Properties,
jobId: Option[Int] = None,
appId: Option[String] = None,
appAttemptId: Option[String] = None)
extends Task[MapStatus](stageId, stageAttemptId, partition.index, metrics, localProperties, jobId,
appId, appAttemptId)

回到MapPartitionsRDD原来的函数中去:

override def compute(split: Partition, context: TaskContext): Iterator[U] =
f(context, split.index, firstParent[T].iterator(split, context))

要看看f是什么?RDD.map函数

def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}

我们在看看我们是如何调用map函数的:

dataSet.map(line => (extractKey(line), extractStats(line)))
f(context, split.index, firstParent[T].iterator(split, context))就是调用了(context, pid,iter) =>iter.map(cleanF) 关键的是iter.map函数这是scala的基本函数,查看scala代码Iterator.scala
def map[B](f: A => B): Iterator[B] = new AbstractIterator[B] {
def hasNext = self.hasNext
def next() = f(self.next())
}
返回的可以简单的认为AbstractIterator,self 指向的是InterruptibleIterator,f 就是 line => (extractKey(line), extractStats(line))
我们来看ExternalSorter.scala通过迭代器获取Partiton的数据并进行运算的代码
while (records.hasNext) {
addElementsRead()
kv = records.next()
map.changeValue((getPartition(kv._1), kv._1), update)
maybeSpillCollection(usingMap = true)
}
  • AbstractIterator.hasNext -> InterruptibleIterator.hasNext ->  Elements( Seq.interator).hasNext -> def hasNext: Boolean = index < end
  • AbstractIterator.next() -> InterruptibleIterator.next() -> Elements( Seq.interator).next(). -> f(InterruptibleIterator.next()) ->(extractKey(InterruptibleIterator.next()), extractStats(InterruptibleIterator.next()))
运算extractKey, extractStats后返回的是一个Product2[Tuple3(String,String,String),Stats] KV值
 
还记得executor会loadDriver的jar么?虽然在scala里所定义函数都默认支持反序列化,但是在运行方法并不需要反序列化,只要加载jar包,classload 这个我们写的driver的类就可以了。

1.1.3 reduceByKey算子

在LogQuery中
.reduceByKey((c, d) => c.merge(d))  

我们来看PairRDDFunction.scala中的reduceByKey,为什么PairRDDFunction不是RDD在前面的博客已经描述过

def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
}

combineByKeyWithClassTag函数中

def combineByKeyWithClassTag[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
if (keyClass.isArray) {
if (mapSideCombine) {
throw new SparkException("Cannot use map-side combining with array keys.")
}
if (partitioner.isInstanceOf[HashPartitioner]) {
throw new SparkException("HashPartitioner cannot partition array keys.")
}
}
val aggregator = new Aggregator[K, V, C](
self.context.clean(createCombiner),
self.context.clean(mergeValue),
self.context.clean(mergeCombiners))
if (self.partitioner == Some(partitioner)) {
self.mapPartitions(iter => {
val context = TaskContext.get()
new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
}, preservesPartitioning = true)
} else {
new ShuffledRDD[K, V, C](self, partitioner)
.setSerializer(serializer)
.setAggregator(aggregator)
.setMapSideCombine(mapSideCombine)
}
}
在以前都没有介绍过Aggregator,我们来介绍一下这个Aggregator,Aggregator有三个关键函数
  1. createCombiner: 通过Map获得的新KV, 在Key不存在的情况下将V转化为C
  2. mergeValue: 通过Map获得的新KV, 在已经存在相同的Key情况下,将新获得的V聚合到C
  3. mergeCombiners: 分布式计算的时候,最后要每个RDD的分区最后汇总,汇总的时候对相同的Key,已经聚合的C和另一个分区已经聚合的C再次聚合

在logquery的例子中,mergeValue, mergeCombiners 就是 (c,d)  =>c.merge(d)            createCombiner就是 stats不变

还是回到ExternalSorter.scala的insertAll中
val mergeValue = aggregator.get.mergeValue
val createCombiner = aggregator.get.createCombiner
var kv: Product2[K, V] = null
val update = (hadValue: Boolean, oldValue: C) => {
if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
}
while (records.hasNext) {
addElementsRead()
kv = records.next()
map.changeValue((getPartition(kv._1), kv._1), update)
maybeSpillCollection(usingMap = true)
}

我们看到在map.changeValue的时候,通过update的方法更新相同的key

val update = (hadValue: Boolean, oldValue: C) => {
if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
}

mergeValue,createCombiner就是从Aggregator中获取到的,而Aggregator被保存在ShuffledRDD和ShuffledDependency中,ShuffledDependency是通过Driver RPC传递给Executor的,所以可以从ShuffledDependency获取到Aggregator,通过Aggregator里指定的算法进行KV的操作,而mergeValue就是Driver中的c.merge(d),因为c 是stats 对象

class Stats(val count: Int, val numBytes: Int) extends Serializable {
def merge(other: Stats): Stats = {
new Stats(count + other.count, numBytes + other.numBytes)
}
override def toString: String = "bytes=%s\tn=%s".format(numBytes, count)
}
调用了Stats.merge的方法

2. 总结

  • 通过反序列化RDD(不是ShuffleRDD),通过Dependency的列表获的最初获取数据的RDD的迭代器A
  • Map算子对迭代器A重新封装AbstractIterator,在迭代器A获取结果后进行Map算子里的函数调用line => (extractKey(line), extractStats(line)),返回KV的结果
  • reduceByKey算子里的函数传递是通过ShuffledDependency里的aggregator进行传递
  • Executor 只要对迭代器AbstractIterator进行迭代获取KV,调用aggregator里的方法进行相同的K对V进行操作,完成Driver里面的main函数定义的RDD运算。

Spark Core(四)用LogQuery的例子来说明Executor是如何运算RDD的算子(转载)的更多相关文章

  1. Spark Core(二)Driver上的Task的生成、分配、调度(转载)

    1. 什么是Task? 在前面的章节里描述过几个角色,Driver(Client),Master,Worker(Executor),Driver会提交Application到Master进行Worke ...

  2. 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池

    第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...

  3. ASP.NET Core 四种释放 IDisposable 对象的方法

    本文翻译自<Four ways to dispose IDisposables in ASP.NET Core>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! IDispos ...

  4. Spark Streaming 002 统计单词的例子

    1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://a ...

  5. spark core (二)

    一.Spark-Shell交互式工具 1.Spark-Shell交互式工具 Spark-Shell提供了一种学习API的简单方式, 以及一个能够交互式分析数据的强大工具. 在Scala语言环境下或Py ...

  6. Spark Core 资源调度与任务调度(standalone client 流程描述)

    Spark Core 资源调度与任务调度(standalone client 流程描述) Spark集群启动:      集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资 ...

  7. Spark Core知识点复习-2

    day1112 1.spark core复习 任务提交 缓存 checkPoint 自定义排序 自定义分区器 自定义累加器 广播变量 Spark Shuffle过程 SparkSQL 一. Spark ...

  8. Spark(四十八):Spark MetricsSystem信息收集过程分析

    MetricsSystem信息收集过程 参考: <Apache Spark源码走读之21 -- WEB UI和Metrics初始化及数据更新过程分析> <Spark Metrics配 ...

  9. Spark(四十七):Spark UI 数据可视化

    导入: 1)Spark Web UI主要依赖于流行的Servlet容器Jetty实现: 2)Spark Web UI(Spark2.3之前)是展示运行状况.资源状态和监控指标的前端,而这些数据都是由度 ...

随机推荐

  1. sql预计简单分页

    在显示记录条目时往往要用到分页,一种常用的办法是利用各种数据库自带的定位接口对原始查询语句进行改写,从而只取出特定范围的某些记录.不同的数据库,查询定位接口是不一样的,下面做一汇总: 数据库 分页查询 ...

  2. Javascript学习笔记--理解prototype

    prototype和closure是js中两个不好搞懂的概念,幸好网上有很多相关的文章,在网上查了一遍以后,总是是觉得有点理解了.今天先说说prototype. 之前一直被ajax in action ...

  3. Material Design系列第五篇——Working with Drawables

    Working with Drawables This lesson teaches you to Tint Drawable Resources Extract Prominent Colors f ...

  4. JSP中使用Spring注入的Bean时需要注意的地方

    遇到问题 遇到一个问题:在JSP中,使用Spring注入的Bean对象时,未能正确地获取到想要的对象. 郁闷的是,它也没报错. 研究问题 使用DEBUG功能(好久不在JSP里写Java代码了,都忘了J ...

  5. 【C#】简单计算器源代码

    form1.cs using System; using System.Collections.Generic; using System.ComponentModel; using System.D ...

  6. 自定义tarBar

    使用tarBar大多数情况在我们都是默认的tarBarButton尺寸和位置但是如果我们想,希望像新浪微博那样的tarBar,就需要自定义了. 1.本质上其实就是通过我们的主控制器中以KVC的方式重新 ...

  7. Docker 利用registry创建私有仓库

    一.Docker-registry镜像 下载地址 官方镜像下载比较慢,因为人品问题一直下载不成功,所以选择了国内的镜像. daocloud:   https://hub.daocloud.io/ 还有 ...

  8. JAVAORM框架之Mybatis (Ibatis) 详解

    目录 Mybatis基础概念 Mybatis开放方式演进 Mybatis框架核心要点 关联查询 延迟加载(懒加载) 动态SQL Mybatis缓存 Mybatis逆向工程 PageHelper分页插件 ...

  9. zTree实现节点修改的实时刷新

    一.应用场景 在实际应用中会遇到动态操作树各节点的需求,在增加树节点后如何实时动态刷新树就十分有必要了. 二.项目实践   比如要在test1234节点下新建子节点,首先要选中test1234节点,添 ...

  10. mongodb的学习笔记一(集合和文档的增删改查)

    1数据库的增删改查 一.增加一个数据库: use blog-----切换到指定的数据库,如果数据库不存在,则自动创建该数据库(新建的数据库,如果没有存储对应的集合,是不会显示出来的) 二.删除一个数据 ...