tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别

https://blog.csdn.net/u014365862/article/details/78238807

MachineLP的Github(欢迎follow):https://github.com/MachineLP

我的GitHub:https://github.com/MachineLP/train_cnn-rnn-attention 自己搭建的一个框架,包含模型有:vgg(vgg16,vgg19), resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152), inception_v4, inception_resnet_v2等。

  1.  
    chunk_size = 256
  2.  
    chunk_n = 160
  3.  
    rnn_size = 256
  4.  
    num_layers = 2
  5.  
    n_output_layer = MAX_CAPTCHA*CHAR_SET_LEN # 输出层

单层rnn:

tf.contrib.rnn.static_rnn:

输入:[步长,batch,input]

输出:[n_steps,batch,n_hidden]

还有rnn中加dropout

  1.  
    def recurrent_neural_network(data):
  2.  
     
  3.  
    data = tf.reshape(data, [-1, chunk_n, chunk_size])
  4.  
    data = tf.transpose(data, [1,0,2])
  5.  
    data = tf.reshape(data, [-1, chunk_size])
  6.  
    data = tf.split(data,chunk_n)
  7.  
     
  8.  
    # 只用RNN
  9.  
    layer = {'w_':tf.Variable(tf.random_normal([rnn_size, n_output_layer])), 'b_':tf.Variable(tf.random_normal([n_output_layer]))}
  10.  
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)
  11.  
    outputs, status = tf.contrib.rnn.static_rnn(lstm_cell, data, dtype=tf.float32)
  12.  
    # outputs = tf.transpose(outputs, [1,0,2])
  13.  
    # outputs = tf.reshape(outputs, [-1, chunk_n*rnn_size])
  14.  
    ouput = tf.add(tf.matmul(outputs[-1], layer['w_']), layer['b_'])
  15.  
     
  16.  
    return ouput

多层rnn:

tf.nn.dynamic_rnn:

输入:[batch,步长,input] 
输出:[batch,n_steps,n_hidden] 
所以我们需要tf.transpose(outputs, [1, 0, 2]),这样就可以取到最后一步的output

  1.  
    def recurrent_neural_network(data):
  2.  
    # [batch,chunk_n,input]
  3.  
    data = tf.reshape(data, [-1, chunk_n, chunk_size])
  4.  
    #data = tf.transpose(data, [1,0,2])
  5.  
    #data = tf.reshape(data, [-1, chunk_size])
  6.  
    #data = tf.split(data,chunk_n)
  7.  
     
  8.  
    # 只用RNN
  9.  
    layer = {'w_':tf.Variable(tf.random_normal([rnn_size, n_output_layer])), 'b_':tf.Variable(tf.random_normal([n_output_layer]))}
  10.  
    #1
  11.  
    # lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(rnn_size)
  12.  
    # outputs1, status1 = tf.contrib.rnn.static_rnn(lstm_cell1, data, dtype=tf.float32)
  13.  
     
  14.  
    def lstm_cell():
  15.  
    return tf.contrib.rnn.LSTMCell(rnn_size)
  16.  
    def attn_cell():
  17.  
    return tf.contrib.rnn.DropoutWrapper(lstm_cell(), output_keep_prob=keep_prob)
  18.  
    # stack = tf.contrib.rnn.MultiRNNCell([attn_cell() for _ in range(0, num_layers)], state_is_tuple=True)
  19.  
    stack = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(0, num_layers)], state_is_tuple=True)
  20.  
    # outputs, _ = tf.nn.dynamic_rnn(stack, data, seq_len, dtype=tf.float32)
  21.  
    outputs, _ = tf.nn.dynamic_rnn(stack, data, dtype=tf.float32)
  22.  
    # [batch,chunk_n,rnn_size] -> [chunk_n,batch,rnn_size]
  23.  
    outputs = tf.transpose(outputs, (1, 0, 2))
  24.  
     
  25.  
    ouput = tf.add(tf.matmul(outputs[-1], layer['w_']), layer['b_'])
  26.  
     
  27.  
    return ouput

tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别的更多相关文章

  1. 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)

    问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建 ...

  2. 关于tensorflow里面的tf.contrib.rnn.BasicLSTMCell 中num_units参数问题

    这里的num_units参数并不是指这一层油多少个相互独立的时序lstm,而是lstm单元内部的几个门的参数,这几个门其实内部是一个神经网络,答案来自知乎: class TRNNConfig(obje ...

  3. tf.contrib.rnn.core_rnn_cell.BasicLSTMCell should be replaced by tf.contrib.rnn.BasicLSTMCell.

    For Tensorflow 1.2 and Keras 2.0, the line tf.contrib.rnn.core_rnn_cell.BasicLSTMCell should be repl ...

  4. tensorflow教程:tf.contrib.rnn.DropoutWrapper

    tf.contrib.rnn.DropoutWrapper Defined in tensorflow/python/ops/rnn_cell_impl.py. def __init__(self, ...

  5. tf.contrib.rnn.LSTMCell 里面参数的意义

    num_units:LSTM cell中的单元数量,即隐藏层神经元数量.use_peepholes:布尔类型,设置为True则能够使用peephole连接cell_clip:可选参数,float类型, ...

  6. tensorflow笔记6:tf.nn.dynamic_rnn 和 bidirectional_dynamic_rnn:的输出,output和state,以及如何作为decoder 的输入

    一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: A ...

  7. tf.nn.dynamic_rnn

    tf.nn.dynamic_rnn(cell,inputs,sequence_length=None, initial_state=None,dtype=None, parallel_iteratio ...

  8. TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu

    import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...

  9. 第十六节,使用函数封装库tf.contrib.layers

    这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.lay ...

随机推荐

  1. Java内存泄露分析和解决方案及Windows自带查看工具

    Java内存泄漏是每个Java程序员都会遇到的问题,程序在本地运行一切正常,可是布署到远端就会出现内存无限制的增长,最后系统瘫痪,那么如何最快最好的检测程序的稳定性,防止系统崩盘,作者用自已的亲身经历 ...

  2. Xtreme8.0 - Sum it up 水题

    Sum it up 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/sum-it-up Descr ...

  3. oracle A用户访问B用户的表aa

    在B中:grant select on aa to A; (还可以配置insert,update,delete权限)

  4. 关于tensorflow中tensorborad No dashboards are active for the current data set.的解决办法

    说明:这个问题,困惑了好久,在网上查了很久,一直没能解决,直到我在stackoverflow上看到有一位博主的回答 链接在这里:(https://stackoverflow.com/questions ...

  5. linux下授予某用户对某文件夹的读写权限

  6. Java 中 byte、byte 数组和 int、long 之间的转换

    Java 中 byte 和 int 之间的转换源码: //byte 与 int 的相互转换 public static byte intToByte(int x) { return (byte) x; ...

  7. 在ASP.NET MVC中使用Knockout实践03,巧用data参数

    使用Knockout,当通过构造函数创建View Model的时候,构造函数的参数个数很可能是不确定的,于是就有了这样的一个解决方案:向构造函数传递一个object类型的参数data. <inp ...

  8. 电子书下载:Delphi XE 5 移动开发入门手册(完整版)

    更多电子书请到: http://maxwoods.400gb.com 下载:Delphi XE5移动开发入门手册(完整版)

  9. 如何调试 Android 上 HTTP(S) 流量

    http://greenrobot.me/devpost/how-to-debug-http-and-https-traffic-on-android/ 如何调试 Android 上 HTTP(S) ...

  10. linux下一个网卡配置多个IP

    转自:http://blog.csdn.net/beckdon/article/details/15815197 最常用的给网卡配置ip的命令为 #ifconfig eth0 192.168.0.1 ...