原题地址:https://oj.leetcode.com/problems/edit-distance/

题意:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。

代码:

class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]

[leetcode]Edit Distance @ Python的更多相关文章

  1. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. Leetcode:Edit Distance 解题报告

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  3. [LeetCode] Edit Distance 字符串变换为另一字符串动态规划

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  4. Leetcode Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  5. [LeetCode] Edit Distance(很好的DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  6. LeetCode: Edit Distance && 子序列题集

    Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...

  7. LeetCode——Edit Distance

    Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...

  8. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  9. Java for LeetCode 072 Edit Distance【HARD】

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. MySQL Binlog 介绍

    Binlog 简介 MySQL中一般有以下几种日志: 日志类型 写入日志的信息 错误日志 记录在启动,运行或停止mysqld时遇到的问题 通用查询日志 记录建立的客户端连接和执行的语句 二进制日志 记 ...

  2. Python基础笔记(一)

    1. 输出 主要函数为print(),基础调用为: myName = "wayne" myAge = 18 print("My name is %s, I'm %d ye ...

  3. 贝壳找房魔法师顾问[并查集+DAG判断]

    题目链接[https://nanti.jisuanke.com/t/27647] //计蒜客2018复赛D题,想简单了. 题解: 题目是中文的,不再赘述. 题解: 分为三种情况:1.两个字符串都不能变 ...

  4. luogu P4779 【模板】单源最短路径(标准版)

    线段树优化dij 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈 我可能是个智障 // luogu-judger-enable-o2 #pragma GCC diagnostic error "-std= ...

  5. 【UOJ#179】线性规划 单纯形

    题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...

  6. hdu 5781 ATM Mechine dp

    ATM Mechine 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 Description Alice is going to take ...

  7. ARM 汇编与C调用的若干问题(一般函数调用情况)

    ARM 汇编与C之间的函数调用需要符合ATPCS,建议函数的形参不超过4个,如果形参个数少于或等于4,则形参由R0,R1,R2,R3四个寄存器进行传递:若形参个数大于4,大于4的部分必须通过堆栈进行传 ...

  8. KTAG K-TAG ECU Programming Tool

    KTAG K-TAG ECU Programming Tool Master Version V2.1 +J-Link JLINK Without Token Limitation Highlight ...

  9. ChibiOS/RT 2.6.9 CAN Driver

    Detailed Description Generic CAN Driver. This module implements a generic CAN (Controller Area Netwo ...

  10. <table>标签的结构和合并单元格的方法

    1.<table>标签的结构 示例代码:  <table border="1">       <caption>信息统计表</captio ...