原题地址:https://oj.leetcode.com/problems/edit-distance/

题意:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。

代码:

class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]

[leetcode]Edit Distance @ Python的更多相关文章

  1. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. Leetcode:Edit Distance 解题报告

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  3. [LeetCode] Edit Distance 字符串变换为另一字符串动态规划

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  4. Leetcode Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  5. [LeetCode] Edit Distance(很好的DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  6. LeetCode: Edit Distance && 子序列题集

    Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...

  7. LeetCode——Edit Distance

    Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...

  8. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  9. Java for LeetCode 072 Edit Distance【HARD】

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. normalizr实践使用(个人总结,仅供参考)

    # normalizr实践使用 原数据 (自编数据,本数据仅供参考) var aaaObj ={ "id" : "0000000000000000000000000000 ...

  2. Asyncio中Lock部分的翻译

    Asyncio中Lock部分的翻译 Locks class asyncio.Lock(*, loop=None) 原始锁的对象. 这个基础的锁是一个同步化的组件,当它上锁的时候就不属于典型的协程了(译 ...

  3. 数据库事务的属性-ACID和隔离级别

    1.数据库事务的属性-ACID(四个英文单词的首写字母): 1)原子性(Atomicity) 所谓原子性就是将一组操作作为一个操作单元,是原子操作,即要么全部执行,要么全部不执行. 2)一致性(Con ...

  4. 【转载】VC IME 通信

    文本输入框作为一个最基本的UI控件,被众多UI框架默认支持.Windows下最简单的就是CEdit(WTL封装),也有更为复杂的CRichEdit(WTL封装).文本输入框是基本控件中最难实现的控件之 ...

  5. Markdown基础用法

    1. 标题 文字前加#,共6级标题,# 一级标题,## 二级标题,...,###### 六级标题 2. 列表 文字前加-或* 即可变无序列表,文字前加 数字. 即可变有序列表 3. 引用 在引用文本前 ...

  6. Kruskal 模板

    最小生成树指的是在图上面找到权值最小的一棵树,并且保证图上所有的点都在这棵树上. 解决办法:Kruskal 算法(贪心思想) 将边按权值从小到大排序,然后按这个顺序不断连边,直到所有点联通. /** ...

  7. Tesseract ocr 3.02学习记录一

    光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程.OCR技术非常专业,一般多是印刷.打印行 ...

  8. POJ 1743 Musical Theme (字符串HASH+二分)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15900   Accepted: 5494 De ...

  9. HDU 4031 Attack

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Sub ...

  10. STM32 F4 General-purpose Timers for Periodic Interrupts

    STM32 F4 General-purpose Timers for Periodic Interrupts