[leetcode]Edit Distance @ Python
原题地址:https://oj.leetcode.com/problems/edit-distance/
题意:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。
代码:
class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]
[leetcode]Edit Distance @ Python的更多相关文章
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode:Edit Distance 解题报告
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] Edit Distance 字符串变换为另一字符串动态规划
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [LeetCode] Edit Distance(很好的DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode: Edit Distance && 子序列题集
Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...
- LeetCode——Edit Distance
Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
随机推荐
- MySQL Binlog 介绍
Binlog 简介 MySQL中一般有以下几种日志: 日志类型 写入日志的信息 错误日志 记录在启动,运行或停止mysqld时遇到的问题 通用查询日志 记录建立的客户端连接和执行的语句 二进制日志 记 ...
- Python基础笔记(一)
1. 输出 主要函数为print(),基础调用为: myName = "wayne" myAge = 18 print("My name is %s, I'm %d ye ...
- 贝壳找房魔法师顾问[并查集+DAG判断]
题目链接[https://nanti.jisuanke.com/t/27647] //计蒜客2018复赛D题,想简单了. 题解: 题目是中文的,不再赘述. 题解: 分为三种情况:1.两个字符串都不能变 ...
- luogu P4779 【模板】单源最短路径(标准版)
线段树优化dij 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈 我可能是个智障 // luogu-judger-enable-o2 #pragma GCC diagnostic error "-std= ...
- 【UOJ#179】线性规划 单纯形
题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...
- hdu 5781 ATM Mechine dp
ATM Mechine 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 Description Alice is going to take ...
- ARM 汇编与C调用的若干问题(一般函数调用情况)
ARM 汇编与C之间的函数调用需要符合ATPCS,建议函数的形参不超过4个,如果形参个数少于或等于4,则形参由R0,R1,R2,R3四个寄存器进行传递:若形参个数大于4,大于4的部分必须通过堆栈进行传 ...
- KTAG K-TAG ECU Programming Tool
KTAG K-TAG ECU Programming Tool Master Version V2.1 +J-Link JLINK Without Token Limitation Highlight ...
- ChibiOS/RT 2.6.9 CAN Driver
Detailed Description Generic CAN Driver. This module implements a generic CAN (Controller Area Netwo ...
- <table>标签的结构和合并单元格的方法
1.<table>标签的结构 示例代码: <table border="1"> <caption>信息统计表</captio ...