[leetcode]Edit Distance @ Python
原题地址:https://oj.leetcode.com/problems/edit-distance/
题意:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。
代码:
class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]
[leetcode]Edit Distance @ Python的更多相关文章
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode:Edit Distance 解题报告
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] Edit Distance 字符串变换为另一字符串动态规划
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [LeetCode] Edit Distance(很好的DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode: Edit Distance && 子序列题集
Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...
- LeetCode——Edit Distance
Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
随机推荐
- normalizr实践使用(个人总结,仅供参考)
# normalizr实践使用 原数据 (自编数据,本数据仅供参考) var aaaObj ={ "id" : "0000000000000000000000000000 ...
- Asyncio中Lock部分的翻译
Asyncio中Lock部分的翻译 Locks class asyncio.Lock(*, loop=None) 原始锁的对象. 这个基础的锁是一个同步化的组件,当它上锁的时候就不属于典型的协程了(译 ...
- 数据库事务的属性-ACID和隔离级别
1.数据库事务的属性-ACID(四个英文单词的首写字母): 1)原子性(Atomicity) 所谓原子性就是将一组操作作为一个操作单元,是原子操作,即要么全部执行,要么全部不执行. 2)一致性(Con ...
- 【转载】VC IME 通信
文本输入框作为一个最基本的UI控件,被众多UI框架默认支持.Windows下最简单的就是CEdit(WTL封装),也有更为复杂的CRichEdit(WTL封装).文本输入框是基本控件中最难实现的控件之 ...
- Markdown基础用法
1. 标题 文字前加#,共6级标题,# 一级标题,## 二级标题,...,###### 六级标题 2. 列表 文字前加-或* 即可变无序列表,文字前加 数字. 即可变有序列表 3. 引用 在引用文本前 ...
- Kruskal 模板
最小生成树指的是在图上面找到权值最小的一棵树,并且保证图上所有的点都在这棵树上. 解决办法:Kruskal 算法(贪心思想) 将边按权值从小到大排序,然后按这个顺序不断连边,直到所有点联通. /** ...
- Tesseract ocr 3.02学习记录一
光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程.OCR技术非常专业,一般多是印刷.打印行 ...
- POJ 1743 Musical Theme (字符串HASH+二分)
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15900 Accepted: 5494 De ...
- HDU 4031 Attack
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Sub ...
- STM32 F4 General-purpose Timers for Periodic Interrupts
STM32 F4 General-purpose Timers for Periodic Interrupts