3108: [cqoi2013]图的逆变换

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 627  Solved: 415
[Submit][Status][Discuss]

Description

给一个n结点m条边的有向图D,可以这样构造图E:给D的每条边u->v,在E中建立一个点uv,然后对于D中的两条边u->v和v->w,在E中从uv向vw连一条有向边。E中不含有其他点和边。
输入E,你的任务是判断是否存在相应的D。注意,D可以有重边和自环。
 

Input

第一行包含测试数据个数T(T<=10)。每组数据前两行为D的边数(即E的点数)m和E的边数k(0<=m<=300)。以下k行每行两个整数x, y,表示E中有一条有向边x->y。E中的点编号为0~m-1。
 

Output

 
对于每组数据输出一行。如果存在,输出Yes,否则输出No。

Sample Input

4
2
1
0 1
5
0
4
3
0 1
2 1
2 3
3
9
0 1
0 2
1 2
1 0
2 0
2 1
0 0
1 1
2 2

Sample Output

Yes
Yes
No
Yes
题解:不存在的情况为:有x->y ; z->y ; 则他们的终点相同,则在有 x->k 却没有 z->k(或则有z->k却没有x->k)这种情况是不存在的;
参考代码:
 #include<bits/stdc++.h>
using namespace std;
#define clr(a,b) memset(a,b,sizeof a)
typedef long long ll;
const int base=;
int T,m,k,u,v,mp[][];
bool solve()
{
for(int i=;i<=m;++i)
{
for(int j=i+;j<=m;++j)
{
int f1=,f2=;
for(int k=;k<=m;++k)
{
if(mp[i][k]&&mp[j][k]) f1=;
if(mp[i][k]^mp[j][k]) f2=;
if(f1&&f2) return false;
}
}
}
return true;
}
int main()
{
scanf("%d",&T);
while(T--)
{
clr(mp,);
scanf("%d%d",&m,&k);
for(int i=;i<=k;++i)
{
scanf("%d%d",&u,&v);
mp[++u][++v]=;
}
if(solve()) printf("Yes\n");
else printf("No\n");
} return ;
}
  

BZOJ 3108: [cqoi2013]图的逆变换的更多相关文章

  1. BZOJ3108 [cqoi2013]图的逆变换

    Description 定义一个图的变换:对于一个有向图\(G=(V, E)\),建立一个新的有向图: \(V'=\{v_e|e \in E\}\),\(E'=\{(v_b, v_e)|b=(u,v) ...

  2. P4575 [CQOI2013]图的逆变换

    传送门 如果新的图里存在边\((u,v)\),那么说明原图中\(u\)的终点和\(v\)的起点是同一个点 于是可以对新图中的每个点维护它的起点和终点,如果有一条边就把对应两个应该相等的点用并查集连起来 ...

  3. [BZOJ 3108] 图的逆变换

    Link: BZOJ 3108 传送门 Solution: 样例教你做题系列 观察第三个输出为No的样例,发现只要存在$edge(i,k),edge(j,k)$,那么$i,j$的出边一定要全部相同 于 ...

  4. BZOJ 2763 分层图最短路

    突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...

  5. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  6. BZOJ 1023 仙人掌图

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...

  7. bzoj 1006 弦图染色

    给定一个弦图,问最少染色数. 对于弦图的一个完美消去序列,从后往前染色,每次染可以染的最小编号的颜色,由完美消去序列的定义,序列任一后缀的点的导出子图中,由该后缀第一个元素及其邻接点导出的子图一定是完 ...

  8. bzoj 1242 弦图判定 MCS

    题目大意: 给定一张无向图,判断是不是弦图. 题解: 今天刚学了<弦图与区间图> 本来写了一个60行+的学习笔记 结果因为忘了保存重启电脑后被还原了... 那就算了吧. MCS最大势算法, ...

  9. BZOJ 3107 [cqoi2013]二进制a+b (DP)

    3107: [cqoi2013]二进制a+b Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 995  Solved: 444[Submit][Stat ...

随机推荐

  1. C#动态多态性的理解

    C#动态多态性是通过抽象类和虚方法实现的. 抽象类的理解 用关键字abstract创建抽象类,用于提供接口的部分类的实现(理解:接口不能提供实现,抽象类中可以有实现,接口与抽象类一起使用,可以达到父类 ...

  2. windows,linux安装redis

    windows安装redis   Redis介绍 Redis是什么 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string.list ...

  3. pat 1015 Reversible Primes(20 分)

    1015 Reversible Primes(20 分) A reversible prime in any number system is a prime whose "reverse& ...

  4. nyoj 57-6174问题(相邻元素判断问题)

    57-6174问题 内存限制:64MB 时间限制:1000ms Special Judge: No accepted:16 submit:31 题目描述: 假设你有一个各位数字互不相同的四位数,把所有 ...

  5. java运算符详解

    java运算符: 定义:用来指明对于操作数的运算方式 按照操作数数目分类: 单目运算    数目运算    三目运算 a++              a+b           (a>b) ? ...

  6. drf组件之jwt认证

    drf组件之jwt认证模块 一.认证规则 全称:json web token 解释:加密字符串的原始数据是json,后台产生,通过web传输给前台存储 格式:三段式 - 头.载荷.签名 - 头和载荷才 ...

  7. HDFS之NameNode

    NameNode&Secondary NameNode工作机制 1)第一阶段:namenode启动 (1)第一次启动namenode格式化后,创建fsimage和edits文件.如果不是第一次 ...

  8. day 36 html的补充

    参考博客:https://www.cnblogs.com/majj/p/9062540.html 内容回顾: 0.浏览器 1.标签 - 行内标签 a span i em strong b.label ...

  9. 手把手教你优雅的编写第一个SpringMVC程序

    可能之前写的文章走进SpringMVC世界,从SpringMVC入门到SpringMVC架构中的第一个springMVC入门程序讲解的不是那么优雅.细致.精巧,因此特地写这篇稍微优雅.细致.精巧一些的 ...

  10. python的time、datetime和calendar

    datetime模块主要是用来表示日期的,就是我们常说的年月日时分秒,calendar模块主要是用来表示年月日,是星期几之类的信息,time模块主要侧重点在时分秒,从功能简单来看,我们可以认为三者是一 ...