Chapter 6

6.1 Inner Products and Norms

Definition (inner product).

Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:

(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)

(b) $⟨cx,y⟩=c⟨x,y⟩. $

(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.

(d) \(⟨x,x⟩>0\) if \(x \neq 0\).

Definition (conjugate transpose).

Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).

Definition (inner product space).

A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.

Definition of some inner products.

Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)

实际上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。

Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).

实际上和Frobenius inner product是一个东西。

H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).

Theorem 6.1.

Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.

(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).

(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).

(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).

(d) \(⟨x,x⟩=0\) if and only if \(x=0\).

(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).

性质(a)和(b)统称conjugate linear,注意不要漏写共轭。

Definition (norm).

Let \(V\) be an inner product space. For \(x ∈ V\), we define the

线代第六章定义&定理整理(持续更新中)的更多相关文章

  1. java视频教程 Java自学视频整理(持续更新中...)

    视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...

  2. docker学习资料整理(持续更新中..)

    docker最近可以说火得一踏糊涂,跟 51大神在交流技术的时候这个东西会多次被提到,当我们还玩vm+linux/freebsd的时候,人家已经上升到更高层次了,这就是差距,感觉好高大上的样子,技术之 ...

  3. “全栈2019”Java第十六章:下划线在数字中的意义

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  4. 2018年最新Java面试题及答案整理(持续完善中…)

    2018年最新Java面试题及答案整理(持续完善中…) 基础篇 基本功 面向对象特征 封装,继承,多态和抽象 封装封装给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法来改变它内 ...

  5. BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js

    BAT 前端开发面经 —— 吐血总结   目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...

  6. iOS --- 总结Objective-C中经常使用的宏定义(持续更新中)

    将iOS开发中经常使用的宏定义整理例如以下,仅包括Objective-C. 而对于Swift,不能使用宏,则能够定义全局函数或者extension.请參考博客iOS - 总结Swift中经常使用的全局 ...

  7. 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...)

    目录 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...) Java书写规范 IDEA的一些常用快捷键 Java类中作为成员变量的类 Java源文件中只能有一个public类 Java中 ...

  8. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  9. 常见 git 需求整理(持续更新中)

    首发于 语雀文档 突然感觉自己对 git 还是挺熟悉的,因为团队里新来的七八号应届生来问我 git 问题,基本没有答不上的情况,但为了能更好地对知识进行整理,还是记录一下为好. (希望能)持续更新.. ...

随机推荐

  1. Java开发桌面程序学习(八)——启动浏览器或者打开资源管理器操作与hyperlink超链接的使用

    启动浏览器或者打开资源管理器 启动浏览器 java1.6版本以上,Desktop Desktop.getDesktop().browse(new URI("www.cnblogs.com/k ...

  2. go实现整型的二进制转化

    go中已经实现了int->bin的转化函数,我这里只是化过程逻辑的实现,至于原理我就假设大家都知道了 本案例只考虑 int->bin  的转化 包含了正整数,负整数,0 的转化 packa ...

  3. Python入门你要懂哪些?

    前言 什么是计算机语言 计算机就是一台用来计算的机器,人让计算机干什么计算机就得干什么! 需要通过计算机的语言来控制计算机(也就是编程语言)! 计算机语言其实和人类的语言没有本质的区别,不同点就是交流 ...

  4. 让你彻底理解volatile,面试不再愁

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  5. new一个对象的初始化过程

    ############################### 今天总结一下,new对象的初始化过程. ############################### 首先,当不含static成员时, ...

  6. Hystrix失败处理逻辑解析

    在上篇文章Hystrix工作流程解析中,我们整体介绍了Hystrix的工作流程,知道了Hystrix会在下面四种情况下发生降级: 熔断器打开 线程池/信号量跑满 调用超时 调用失败 本篇文章则介绍一下 ...

  7. JS基础语法---分支语句总结

    分支语句: if语句:一个分支 if-else语句:两个分支,最终只执行一个分支 if-else if-else if...语句: 多个分支,也是只会执行一个 switch-case语句:多分支语句, ...

  8. 关于vue项目中使用组件的一些心得

    在编写一个可能是共组件的情况下,尽量在组件内部只处理相关组件内部的逻辑,组件外的逻辑通过事件总线emit,否则一旦当前组件涉及其他组件的逻辑就会发生耦合,在一个新的组件里面使用的时候,就会造成后悔的情 ...

  9. HTTP中的301、302、303、307、308

    结论 3XX开头的HTTP状态码都表示重定向的响应. 301.308是永久重定向:302.303.307是临时重定向. 301.302是http 1.0的内容,303.307.308是http1.1的 ...

  10. Java 数学操作类

    数学操作类 Math类 数学计算操作类 类属性值 Math.E ^ Math.PI 圆周率 类方法 Math类中,一切方法都是 static 型,因为Math类中没有普通属性. round() 方法 ...