Chapter 6

6.1 Inner Products and Norms

Definition (inner product).

Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:

(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)

(b) $⟨cx,y⟩=c⟨x,y⟩. $

(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.

(d) \(⟨x,x⟩>0\) if \(x \neq 0\).

Definition (conjugate transpose).

Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).

Definition (inner product space).

A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.

Definition of some inner products.

Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)

实际上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。

Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).

实际上和Frobenius inner product是一个东西。

H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).

Theorem 6.1.

Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.

(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).

(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).

(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).

(d) \(⟨x,x⟩=0\) if and only if \(x=0\).

(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).

性质(a)和(b)统称conjugate linear,注意不要漏写共轭。

Definition (norm).

Let \(V\) be an inner product space. For \(x ∈ V\), we define the

线代第六章定义&定理整理(持续更新中)的更多相关文章

  1. java视频教程 Java自学视频整理(持续更新中...)

    视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...

  2. docker学习资料整理(持续更新中..)

    docker最近可以说火得一踏糊涂,跟 51大神在交流技术的时候这个东西会多次被提到,当我们还玩vm+linux/freebsd的时候,人家已经上升到更高层次了,这就是差距,感觉好高大上的样子,技术之 ...

  3. “全栈2019”Java第十六章:下划线在数字中的意义

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  4. 2018年最新Java面试题及答案整理(持续完善中…)

    2018年最新Java面试题及答案整理(持续完善中…) 基础篇 基本功 面向对象特征 封装,继承,多态和抽象 封装封装给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法来改变它内 ...

  5. BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js

    BAT 前端开发面经 —— 吐血总结   目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...

  6. iOS --- 总结Objective-C中经常使用的宏定义(持续更新中)

    将iOS开发中经常使用的宏定义整理例如以下,仅包括Objective-C. 而对于Swift,不能使用宏,则能够定义全局函数或者extension.请參考博客iOS - 总结Swift中经常使用的全局 ...

  7. 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...)

    目录 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...) Java书写规范 IDEA的一些常用快捷键 Java类中作为成员变量的类 Java源文件中只能有一个public类 Java中 ...

  8. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  9. 常见 git 需求整理(持续更新中)

    首发于 语雀文档 突然感觉自己对 git 还是挺熟悉的,因为团队里新来的七八号应届生来问我 git 问题,基本没有答不上的情况,但为了能更好地对知识进行整理,还是记录一下为好. (希望能)持续更新.. ...

随机推荐

  1. idea整合svn

    如果遇到找不到svn.exe的情况.可以重新运行svn的安装程序.勾选上svn的安装.

  2. .net core 的 aop 实现方法汇总

    decorator 不借助第三方DI容器,通过装饰模式通过内置的DI容器实现 https://medium.com/@willie.tetlow/net-core-dependency-injecti ...

  3. 屏幕输入转换为int//方法大注释

    可以使用两种方法: using System; namespace 方法测试 { class Program { static void Main(string[] args) { Console.W ...

  4. Ubuntu 安装最新版nodejs

    转自:ubuntu快速安装最新版nodejs,只需2步 第一步,去 nodejs 官网 https://nodejs.org 看最新的版本号: 也就是说此时此刻,12.6.0 是最新的版本,不过你求稳 ...

  5. Java的23种设计模式,详细讲解(二)

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  6. Spring源码解析系列汇总

    相信我,你会收藏这篇文章的 本篇文章是这段时间撸出来的Spring源码解析系列文章的汇总,总共包含以下专题.喜欢的同学可以收藏起来以备不时之需 SpringIOC源码解析(上) 本篇文章搭建了IOC源 ...

  7. Zipkin架构简介

    Zipkin基本概念 Span:基本工作单元,一次链路调用就会创建一个Span Trace:一组Span的集合,表示一条调用链路.举个例子:当前存在服务A调用服务B然后调用服务C,这个A->B- ...

  8. vscode 设置代码格式化缩进为2个空格

    打开文件——>首选——>设置 输入搜索 tabsize 按照下图设置即可,然后打开 注意:如果不将Detect Indentation 勾选取消 以前用tab创建的忘记依然为4个空格

  9. 浅谈Vue下的components模板

    浅谈Vue下的components模板在我们越来越深入Vue时,我们会发现我们对HTML代码的工程量会越来越少,今天我们来谈谈Vue下的 components模板的 初步使用方法与 应用 我们先来简单 ...

  10. Android MediaRecorder录制播放音频

    1.请求录制音频权限 <user-permission android:name="android.permission.RECORD_AUDIO"/> RECORD_ ...