百度艾尼(ERNIE)常见问题汇总及解答
一、ERNIE安装配置类问题
Q1:最适合ERNIE2.0的PaddlePaddle版本是?
A1:PaddlePaddle版本建议升级到1.5.0及以上版本。
Q2:ERNIE可以在哪些系统上使用?
A2:优化后各个系统都会支持,目前建议在Linux系统使用。
二、ERNIE使用类问题
Q1:ERNIE目前能做哪些任务?
A1:(1)基于ERNIE模型Fine-tune后,直接能做的任务如下:
- 词性标注任务,请参考:https://aistudio.baidu.com/aistudio/projectDetail/109660
- 阅读理解任务,请参考:https://github.com/PaddlePaddle/ERNIE/blob/develop/README.zh.md
- 分类任务,请参考:https://github.com/PaddlePaddle/ERNIE/blob/develop/README.zh.md
- 多标签分类,请参考:https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.1.0/demo/multi-label-classification
- 排序任务;
(2)需要用户在ERNIE的基础上做开发后能做的任务如下:
- 文本生成任务,目前需要用户在ERNIE的基础上开发生成任务的Fine-tune代码。同时我们也在研发专门适配生成的通用预训练模型,预期效果更好,后续进展请多多关注。
- 实体关系抽取任务,目前需要用户在ERNIE的基础上开发信息抽取任务的Fine-tune代码。
Q2:ERNIE实现检索功能了吗?
A2:实现了,使用cls embedding或者顶层所有词的表示做pooling当做sentence encoder的输出。
Q3:ERNIE能做信息流推荐吗?
A3:可以,具体来讲,可以基于ERNIE 抽取Document和User 的向量作为对文章和用户的语义建模,然后对Document 的语义特征离线建立索引库,在线端根据用户的语义表达去索引库中召回语义相关性较高的文章。
Q4:ERNIE能用于长文本吗?
A4:可以,当前可以考虑将长句拆分,分别输入ERNIE后再拼接的方式使用ERNIE。不过我们也在研发专门适配长文本的通用预训练模型,后续进展请多多关注。
Q5:ERNIE可以用C++或者Java调用吗?
A5:ERNIE预测时,通过C++调用的接口正在优化中。Java暂不支持。
Q6:ERNIE有没有在自己的corpus上进行预训练的教程?
A6:2.0的中文预训练代码暂时没有开源,可以参考1.0教程。教程链接:
https://github.com/PaddlePaddle/ERNIE/blob/develop/README.zh.md#%E9%A2%84%E8%AE%AD%E7%BB%83-ernie-10。
Q7:ERNIE2.0的中文预训练模型发布了吗?
A7:为了让大家更方便、快捷、高效的使用ERNIE,我们正在做易用性更强的ERNIE平台化服务工作,届时会与ERNIE2.0模型同步开放给大家,欢迎大家使用。
Q8:ERNIE支持Python3吗?
A8:支持。
Q9:ERNIE都支持哪些语言吗?
A9:目前支持中文简体、英文。
三、ERNIE工具类问题
Q1:ERNIE能做在线服务吗?性能怎么样?
A1:可以。在线服务的性能问题可以通过模型蒸馏的方案解决,我们ERNIE Tiny 模型也在研发中,可以大幅度提升在线预测性能,ERNIE Tiny模型后续会逐步开源,可以多多关注。
在轻量级、模型压缩方面ERNIE将会推出ERNIE Slim技术和ERNIE Tiny模型。其中
ERNIE Slim基于数据蒸馏技术,以大规模无监督语料为桥梁,辅以数据增强和混合策略,利用百倍提速的轻量级DNN模型去蒸馏ERNIE模型,从而达到显著加速的效果,达到工业级上线要求;
ERNIE Tiny基于模型蒸馏技术,在预训练阶段利用浅层ERNIE模型去蒸馏深层ERNIE模型的输出分布,同时引入subword粒度来减少输入句子长度。预计发布的3层ERNIE Tiny模型相对于ERNIE模型在效果有限下降情况下,速度提升4.2倍左右。
Q2:ERNIE有提供类似Bert-as-Service的服务吗?
A2:有。近期(预计11月初)将开源。
四、ERNIE资料类问题
Q1:ERNIE有详细的使用教程么?
A1:有,请参考:https://github.com/PaddlePaddle/ERNIE/blob/develop/README.zh.md
Q2:ERNIE的论文下载地址?
A2:https://arxiv.org/abs/1907.12412
Q3:ERNIE的GitHub项目地址?
A3:https://github.com/PaddlePaddle/ERNIE
五、其它问题
Q1:BERT与ERNIE谁更强?
A1:从效果来看,ERNIE的效果领先于BERT。BERT、XLNet等主流方法都强调通过强力的Transformer 直接构建语言模型,而ERNIE 2.0 通过多任务预训练的方法加强模型学到的语言知识。
ERNIE 2.0 通过增量学习的方式更新,也就是说可以通过自定义的NLP 任务微调已训练模型,加强预训练效果。
ERNIE2.0 模型在英语任务上很多都优于BERT 和XLNet,在7 个GLUE 任务上取得了最好的结果;中文任务上,ERNIE 2.0 模型在所有9 个中文NLP任务上全面优于BERT。
Q2:ERNIE效果领先BERT是否得益于更多数据?
A2:否。我们对比了不同模型公布的数据量,BERT: 3.3B (tokens), ERNIE:7.9 B (tokens),
XLNet: 32.8B (tokens),目前版本的数据规模是XLNet的1/4,同时ERNIE 没有使用人工直接标注的数据,所有数据可以通过无监督或者弱监督的方式大量得到。
Q3:ERNIE可以理解为是知识图谱+BERT吗?
A3:不是,ERNIE没有利用图谱信息,而是直接从文本中学习知识。
Q4:ERNIE的多任务持续学习是怎么实现的?
A4:ERNIE2.0 的预训练任务是一个逐步增加的过程,先训练Task1, 然后逐步增加到多个TaskN,多个Task 的训练是按照一定的概率分布对Task 进行采样,比如: 第一个batch 训练Task1,第2个batch 训练Task2 。训练过程中是通过多机多卡训练,有些卡去训练任务1,有些卡训练任务2。由于目前预训练代码还未开源,用户暂时无法添加新任务做预训练。
-------------------
划重点!!!
扫码关注百度NLP官方公众号,获取百度NLP技术的第一手资讯!
加入ERNIE官方技术交流群(760439550),百度工程师实时为您答疑解惑!
立即前往GitHub( github.com/PaddlePaddle/ERNIE )为ERNIE点亮Star,马上学习和使用起来吧!
最强预告!
11月23日,艾尼(ERNIE)的巡回沙龙将在上海加场,干货满满的现场,行业A级的导师,还有一群志同道合的小伙伴,还在等什么?感兴趣的开发者们赶紧扫描下方“二维码”或点击“链接”报名参加吧!
报名链接:https://iwenjuan.baidu.com/?code=vc78lp
百度艾尼(ERNIE)常见问题汇总及解答的更多相关文章
- 百度艾尼ERNIE专场再入魔都,11月23日线下开讲!
这个十一月,是属于深度学习开发者们的秋季盛宴.『WAVE Summit+』2019 深度学习开发者秋季峰会刚刚落下帷幕,基于ERNIE的语义理解工具套件也在此次峰会上全新发布,旨在为企业级开发者提供更 ...
- 最强中文NLP预训练模型艾尼ERNIE官方揭秘【附视频】
“最近刚好在用ERNIE写毕业论文” “感觉还挺厉害的” “为什么叫ERNIE啊,这名字有什么深意吗?” “我想让艾尼帮我写作业” 看了上面火热的讨论,你一定很好奇“艾尼”.“ERNIE”到底是个啥? ...
- 全干货!百度AI快车道艾尼专场成都站开启报名
成都市自年初出台<成都市加快人工智能产业发展推进方案(2019-2022年)>以来,便积极推动相关企业落地.强化人才培养并推进人工智能与传统行业融合应用,在AI赛道上不断"加速& ...
- CentOS安装Oracle数据库详细介绍及常见问题汇总
一.安装前准备 1.软件硬件要求 操作系统:CentOS 6.4(32bit)Oracle数据库版本:Oracle 10g(10201_database_linux32.zip)最小内存:1G(检查命 ...
- SVN集中式版本控制器的安装、使用与常见问题汇总
SVN是Subversion的简称,是一个开放源代码的版本控制系统,它采用了分支管理系统,集中式版本控制器 官方网站:https://www.visualsvn.com/ 下载右边的服务器端,左边的客 ...
- H5项目常见问题汇总及解决方案
H5项目常见问题汇总及解决方案 H5 2015-12-06 10:15:33 发布 您的评价: 4.5 收藏 4收藏 H5项目常见问题及注意事项 Meta基础知识: H5页 ...
- Installshield脚本拷贝文件常见问题汇总
原文:Installshield脚本拷贝文件常见问题汇总 很多朋友经常来问:为什么我用CopyFile/XCopyFile函数拷贝文件无效?引起这种情况的原因有很多,今天略微总结了一下,欢迎各位朋友跟 ...
- MVC 网站部署常见问题汇总
一:TGIShare项目是一个MVC5的网站程序,部署在了IIS上,使用的Windows验证方式,并在本机设置了计划任务定时调用某个地址执行命令.问题汇总如下: 1.Window Server 200 ...
- J2EE进阶(十)SSH框架整合常见问题汇总(一)
SSH框架整合常见问题汇总(一) 前言 以下所列问题具有针对性,但是遇到同类型问题时均可按照此思路进行解决. HTTP Status 404 - No result defined for actio ...
随机推荐
- SpringCloud系列-利用Feign实现声明式服务调用
上一篇文章<手把手带你利用Ribbon实现客户端的负载均衡>介绍了消费者通过Ribbon调用服务实现负载均衡的过程,里面所需要的参数需要在请求的URL中进行拼接,但是参数太多会导致拼接字符 ...
- [插件化开发] 1. 初识OSGI
初识 OSGI 背景 当前product是以solution的方式进行售卖,但是随着公司业务规模的快速夸张,随之而来的是新客户的产品开发,老客户的产品维护,升级以及修改bug,团队的效能明显下降,为了 ...
- Docker 安装Oracle
1.使用docker 命令搜索oracle 镜像,前提是已安装了Docker docker search oracle 2.下载相应版本的oracle 镜像 docker pull sath89/o ...
- SpringCloud之Eureka、Ribbon
一.微服务架构 简单的说,微服务是系统架构的一种设计风格,它的主旨是将一个原本独立的系统拆分为多个小型服务,这些小型服务都在各自独立的进程中运行,服务之间通过基于HTTP的RESTful API进行通 ...
- JVM之内存结构详解
对于开发人员来说,如果不了解Java的JVM,那真的是很难写得一手好代码,很难查得一手好bug.同时,JVM也是面试环节的中重灾区.今天开始,<JVM详解>系列开启,带大家深入了解JVM相 ...
- Java之微信公众号开发
这次以文本回复作为案例来讲解Java相关得微信公众号开发. 首先必须要有一个个人微信公众号 个人微信公众号相关的接口权限有限,不过用于个人学习体验一下足够了,如图: 然后进入微信公众后台,点击基本配置 ...
- Windows 服务程序(一)
Windows 服务程序简介: Windows服务应用程序是一种需要长期运行的应用程序,它对于服务器环境特别适合. 它没有用户界面,并且也不会产生任何可视输出.任何用户消息都会被写进Windows事件 ...
- 详解Java Web项目启动执行顺序
一. web.xml加载过程(步骤): 启动web项目,容器(如Tomcat.Apache)会去读取它的配置文件web.xml 中的两个节点,context-param和listener. 紧接着,容 ...
- ESP8266开发之旅 网络篇⑧ SmartConfig——一键配网
授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...
- Spring Boot从零入门1_详述
本文属于原创,转载注明出处,欢迎关注微信小程序`小白AI博客` 微信公众号`小白AI`或者网站 [https://xiaobaiai.net](https://xiaobaiai.net) ![](h ...