三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感。下面分别介绍这两个算法:
文章[Lipman et al. 2005]提出的网格形变算法需要求解两次稀疏线性方程组:第一个方程定义了网格上离散坐标系之间的关系,通过求解该方程可以重组每个顶点的坐标系;第二个方程记录了顶点在局部坐标系的位置信息,通过求解该方程可以得到每个顶点的几何坐标。
在网格顶点建立局部坐标系(b1i,b2i,Ni),i∈V。对于(i,j)∈E,定义差分算子δ:
δj(b1i) = b1j – b1i
δj(b2i) = b2j – b2i
δj(Ni) = Nj – Ni
将差分算子表示为b1i,b2i,Ni的形式:
δj(b1i) = C11ijb1i + C12ijb2i + C13ijNi
δj(b2i) = C21ijb1i + C22ijb2i + C23ijNi
δj(Ni) = C31ijb1i + C32ijb2i + C33ijNi
进一步表示为:
b1j = (C11ij+1)b1i + C12ijb2i + C13ijNi
b2j = C21ijb1i + (C22ij+1)b2i + C23ijNi
Nj = C31ijb1i + C32ijb2i + (C33ij+1)Ni
上式为第一个方程,记录了网格上离散坐标系之间的关系,其中的系数可以由原始网格得到。
xj - xi = <eij , b1i >b1i + <eij , b2i >b2i + <eij , Ni >Ni
上式为第二个方程,记录了顶点在局部坐标系的位置信息,其中的系数也可以由原始网格得到。
算法效果:
文章[Sorkine et al. 2007]提出了ARAP的网格形变算法,网格顶点的一环邻域三角片组成一个单元(Cell),当顶点i对应的单元Ci变形为Ci’时,定义其刚性(rigidity)能量函数为:
网格上所有单元的刚性能量之和为:
根据能量函数,算法实现过程分两步进行迭代,第一步更新Ri,第二步更新 pi’,下面为具体推导过程。
1.更新Ri:
设eij = pi - pj,那么能量函数E(S’)可以表示为:
忽略不含Ri的项,那么:
定义协方差矩阵Si:,将Si奇异值分解:Si = UiΣiViT,那么Ri = ViUiT。
2.更新pi’:
权重wij和wi分别为:wij = 1/2(cotαij + cotβij),wi = 1。我们将E(S’)对pi’求偏导,并令其等于零:
上式中wij = wji,于是,那么我们可以得到:
上式相当于求解稀疏矩阵方程组。
算法效果:
本文为原创,转载请注明出处:http://www.cnblogs.com/shushen。
参考文献:
[1] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. 2005. "Linear rotation-invariant coordinates for meshes." In ACM SIGGRAPH 2005 Papers (SIGGRAPH '05) 24:3 (2005), 479-487.
[2] O. Sorkine and M. Alexa. "As-Rigid-As-Possible Surface Modeling." In Proc. of Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland: Eurographics Association, 2007.
三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)的更多相关文章
- 三维动画形变算法(Laplacian-Based Deformation)
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...
- 三维动画形变算法(Gradient-Based Deformation)
将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格 ...
- 三维动画形变算法(Mixed Finite Elements)
混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉 ...
- 三维网格形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...
- 在图层上使用CATransform3D制做三维动画-b
在UIView上,我们可以使用CGAffineTransform来对视图进行:平移(translation),旋转(Rotation),缩 放(scale),倾斜(Invert)操作,但这些操作是没有 ...
- u3d 楼梯,圆环,椭圆,直线运动。世界坐标。点击。U3d stair, ring, ellipse, linear motion.World coordinates.Click .
u3d 楼梯,圆环,椭圆,直线运动.世界坐标.点击. U3d stair, ring, ellipse, linear motion.World coordinates.Click . 作者:韩梦飞沙 ...
- 三维网格形变算法(Laplacian-Based Deformation)
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...
- Camera三维动画
一.概述 在Android中说到3D开发,我们首先想到的是OpenGL,但用起来比较复杂繁琐,不适合做应用级别的3D变换.Android为我们提供了一个简化版的3D开发入口:Camera(这里的Cam ...
- 高阶Laplace曲面形变算法(Polyharmonic Deformation)
数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S* ...
随机推荐
- nginx处理302、303和修改response返回的header和网页内容
背景 遇到一个限制域名的平台,于是使用nginx在做网站转发,其中目标网站在访问过程中使用了多个302.303的返回状态,以便跳转到指定目标(为什么限制,就是防止他的网站的镜像). 在查找了一段资料后 ...
- vue教程(四)--其他实用用法补充
一.vue生命周期简单介绍 var App={ template:'', data(){ }, beforeCreated:function(){ //不能操作数据,只是初始化了事件等.. }, cr ...
- .NET开发框架(八)-服务器集群之网络负载平衡演示(视频)
(有声视频-服务器集群之负载平衡-NLB演示) 观看NLB视频的童鞋,都会继续观看IIS的负载平衡教程,点击>> 本文以[图文+视频],讲解Windows服务器集群的网络负载平衡NLB的作 ...
- Shiro权限管理框架(二):Shiro结合Redis实现分布式环境下的Session共享
首发地址:https://www.guitu18.com/post/2019/07/28/44.html 本篇是Shiro系列第二篇,使用Shiro基于Redis实现分布式环境下的Session共享. ...
- UltraEdit不自动生成保存备份文件(.bak)
UltraEdit修改文件或格式化文件保存后会生成烦人的.bak文件. 去掉该功能办法如下: 高级 -> 配置 -> 文件处理 -> 备份 “保存时备份文件”选择“不备份” (Adv ...
- Android的日期选择器
TimePicker(时间选择器) 方法 描述 Integer getCurrentHour () 返回当前设置的小时 Integer getCurrentMinute() 返回当前设置的分钟 boo ...
- Chrome 使用 Evernote 插件
Chrome 插件不能登印象笔记进行裁剪,被困扰有段时间了.昨天偶然在知乎上找到了解决方法: 链接:https://www.zhihu.com/question/20340803/answer/291 ...
- dubbo负载均衡是如何实现的?
dubbo的负载均衡全部由AbstractLoadBalance的子类来实现 RandomLoadBalance 随机 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀 ...
- redis分布式锁&队列应用
分布式锁 setnx(set if not exists) 如果设值成功则证明上锁成功,然后再调用del指令释放. // 这里的冒号:就是一个普通的字符,没特别含义,它可以是任意其它字符,不要误解 & ...
- Kotlin的特性
time streams try-with-resources 函数扩展,给types.classes或者interfaces新增方法 null safe 不需要new,后缀声明类型 自动转换有get ...