在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感。下面分别介绍这两个算法:

  文章[Lipman et al. 2005]提出的网格形变算法需要求解两次稀疏线性方程组:第一个方程定义了网格上离散坐标系之间的关系,通过求解该方程可以重组每个顶点的坐标系;第二个方程记录了顶点在局部坐标系的位置信息,通过求解该方程可以得到每个顶点的几何坐标。

在网格顶点建立局部坐标系(b1ib2iNi),i∈V。对于(i,j)∈E,定义差分算子δ:

δj(b1i) = b1jb1i

δj(b2i) = b2jb2i

δj(Ni) = NjNi

       将差分算子表示为b1ib2iNi的形式:

δj(b1i) = C11ijb1i + C12ijb2i + C13ijNi

δj(b2i) = C21ijb1i + C22ijb2i + C23ijNi

δj(Ni) = C31ijb1i + C32ijb2i + C33ijNi

进一步表示为:

b1j = (C11ij+1)b1i + C12ijb2i + C13ijNi

b2j = C21ijb1i + (C22ij+1)b2i + C23ijNi

Nj = C31ijb1i + C32ijb2i + (C33ij+1)Ni

  上式为第一个方程,记录了网格上离散坐标系之间的关系,其中的系数可以由原始网格得到。

xj - xi = <eij , b1i >b1i + <eij , b2i >b2i + <eij , Ni >Ni

  上式为第二个方程,记录了顶点在局部坐标系的位置信息,其中的系数也可以由原始网格得到。

  算法效果:

  文章[Sorkine et al. 2007]提出了ARAP的网格形变算法,网格顶点的一环邻域三角片组成一个单元(Cell),当顶点i对应的单元Ci变形为Ci’时,定义其刚性(rigidity)能量函数为:

  网格上所有单元的刚性能量之和为:

  根据能量函数,算法实现过程分两步进行迭代,第一步更新Ri,第二步更新 pi’,下面为具体推导过程。

  1.更新Ri

  设eij = pi - pj,那么能量函数E(S’)可以表示为:

  忽略不含Ri的项,那么:

  定义协方差矩阵Si,将Si奇异值分解:Si = UiΣiViT,那么Ri = ViUiT

  2.更新pi’:

  权重wij和wi分别为:wij = 1/2(cotαij + cotβij),wi = 1。我们将E(S’)对pi’求偏导,并令其等于零:

  上式中wij = wji,于是,那么我们可以得到:

  上式相当于求解稀疏矩阵方程组。

  算法效果:

 

本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

参考文献:

[1] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. 2005. "Linear rotation-invariant coordinates for meshes." In ACM SIGGRAPH 2005 Papers (SIGGRAPH '05) 24:3 (2005), 479-487.

[2] O. Sorkine and M. Alexa. "As-Rigid-As-Possible Surface Modeling." In Proc. of Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland: Eurographics Association, 2007.

三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)的更多相关文章

  1. 三维动画形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  2. 三维动画形变算法(Gradient-Based Deformation)

    将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格 ...

  3. 三维动画形变算法(Mixed Finite Elements)

    混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉 ...

  4. 三维网格形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)

    在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...

  5. 在图层上使用CATransform3D制做三维动画-b

    在UIView上,我们可以使用CGAffineTransform来对视图进行:平移(translation),旋转(Rotation),缩 放(scale),倾斜(Invert)操作,但这些操作是没有 ...

  6. u3d 楼梯,圆环,椭圆,直线运动。世界坐标。点击。U3d stair, ring, ellipse, linear motion.World coordinates.Click .

    u3d 楼梯,圆环,椭圆,直线运动.世界坐标.点击. U3d stair, ring, ellipse, linear motion.World coordinates.Click . 作者:韩梦飞沙 ...

  7. 三维网格形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  8. Camera三维动画

    一.概述 在Android中说到3D开发,我们首先想到的是OpenGL,但用起来比较复杂繁琐,不适合做应用级别的3D变换.Android为我们提供了一个简化版的3D开发入口:Camera(这里的Cam ...

  9. 高阶Laplace曲面形变算法(Polyharmonic Deformation)

    数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S* ...

随机推荐

  1. [virtualenvwrapper] 命令小结

    创建环境 mkvirtualenv env1 mkvirtualenv env2 环境创建之后,会自动进入该目录,并激活该环境. 切换环境 workon env1 workon env2 列出已有环境 ...

  2. 我狠起来连自己都打---如何简单实现Azure resource自动打标签

    你是否还在为花费大量Azure Resource打标签而烦恼呢?你是否还在因为这样低效的重复劳动而痛苦呢? 在很长一段时间内,笔者既要做云架构调整,又要做日常系统维护,还要参与各种各样的项目,在这种情 ...

  3. MyEclipse 2016 Stable 1.0破解教程

    一.下载所需文件 1. Windows最新版: MyEclipse 2016 Stable 1.0离线安装包(文件大小:1.52GB)--完整安装包,无需在线下载http://pan.baidu.co ...

  4. 在工作中常用到的SQL

    前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 最近在公司做了几张报表,还记得刚开始要做报表的时候都 ...

  5. Python字典排序

    利用引出一个例子来理解 例如:比如使用Python字典排序,d={'a':1,'c':3,'b':2}按值升序排列,我们可以用sorted高阶函数或者用列表的.sort()方法.下面具体阐述两种排序方 ...

  6. 0 Spark完成WordCount操作

    先看下结果: pom.xml: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http ...

  7. 深入学习 Intellij IDEA 调试技巧

    程序员的日常工作除了写代码之外,很大一部分时间将会在查找 BUG,解决问题.查找 BUG,离不开在 IDE 中调试代码.熟练的掌握调试技巧,可以帮助我们减少查找时间,快速定位问题. 在 IDEA 中调 ...

  8. 泥瓦匠 5 年 Java 的成长感悟(下)

    继续<泥瓦匠 5 年 Java 的成长感悟(上)>,大致包括下面几点: 学技术的心态 学技术的学法 工作的心态 工作的硬技能 工作的软实力 听点雷子的民谣,我就安静地感概感概.上次说写的, ...

  9. dubbo负载均衡是如何实现的?

    dubbo的负载均衡全部由AbstractLoadBalance的子类来实现 RandomLoadBalance 随机 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀 ...

  10. main方法中注入Spring bean

    在有些情况下需要使用main使用Spring bean,但是main方法启动并没有托管给Spring管理,会导致bean失败,报空指针异常. 可以使用 ClassPathXmlApplicationC ...