A secret service developed a new kind of explosive that attain its volatile property only when a specific association of products occurs. Each product is a mix of two different simple compounds, to which we call a binding pair. If N > 2, then mixing N different binding pairs containing N simple compounds creates a powerful explosive. For example, the binding pairs A+B, B+C, A+C (three pairs, three compounds) result in an explosive, while A+B, B+C, A+D (three pairs, four compounds) does not. You are not a secret agent but only a guy in a delivery agency with one dangerous problem: receive binding pairs in sequential order and place them in a cargo ship. However, you must avoid placing in the same room an explosive association. So, after placing a set of pairs, if you receive one pair that might produce an explosion with some of the pairs already in stock, you must refuse it, otherwise, you must accept it. An example. Lets assume you receive the following sequence: A+B, G+B, D+F, A+E, E+G, F+H. You would accept the first four pairs but then refuse E+G since it would be possible to make the following explosive with the previous pairs: A+B, G+B, A+E, E+G (4 pairs with 4 simple compounds). Finally, you would accept the last pair, F+H. Compute the number of refusals given a sequence of binding pairs.

Input

The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line. Instead of letters we will use integers to represent compounds. The input contains several lines. Each line (except the last) consists of two integers (each integer lies between 0 and 105 ) separated by a single space, representing a binding pair. Each test case ends in a line with the number ‘-1’. You may assume that no repeated binding pairs appears in the input.

Output

For each test case, the output must follow the description below. A single line with the number of refusals.

Sample Input

1 2

3 4

3 5

3 1

2 3

4 1

2 6

6 5

-1

Sample Output

3

题解:
  好久没有发博客了,写一道水题。

  首先k和k想到了图论中的环,把每个颜色看成一个点,一个元素看成边,如果出现环就显然不合法,所以并查集判环就可以了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <queue>
#define MAXN 100100
using namespace std;
int x,y,fa[MAXN]; int find(int x){
if(x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
} int main()
{
int x,y;
while(scanf("%d",&x)==){
for(int i=;i<=MAXN-;i++) fa[i]=i;
int cnt=;
while(x!=-){
scanf("%d",&y);
x=find(x),y=find(y);
if(x==y) cnt++;
else fa[x]=y;
scanf("%d",&x);
}
printf("%d\n",cnt);
}
return ;
}

UVA - 1160 X-Plosives的更多相关文章

  1. LA 3644 - X-Plosives ( 也即UVA 1160)

    LA看题 请点击:传送门 UVA 上也有这题 :UVA 1160 - X-Plosives 题目大意就是如果车上存在 k 个简单化合物,正好包含 k 种元素 ,那么它们将有危险,此时你应该拒绝装车. ...

  2. UVA 1569 Multiple

    题意: 给定m个1位数字,要求用这些数字组成n的倍数的最小数字,如果无法组成就输出0 分析: BFS,由于n最大5000,余数最多5000,利用余数去判重,并记录下路径即可 代码: #include ...

  3. UVA 1395 Slim Span

    题意: 要求的是所有生成树中最大边与最小边差值最小的那个. 分析: 其实可以利用最小瓶颈生成树,就是最小生成树这一性质,枚举原图的最小边,然后找相应生成树的最大边 代码: #include <i ...

  4. UVA 1160 - X-Plosives 即LA3644 并查集判断是否存在环

    X-Plosives A secret service developed a new kind ofexplosive that attain its volatile property only ...

  5. UVA - 11400 Lighting System Design

    题文: You are given the task to design a lighting system for a huge conference hall. After doing a lot ...

  6. UVA 1160 X-Plosives

    题意是一次装入物品,物品由两种元素组成,当遇到即将装入的物品与已经装入的物品形成k个物品,k种元素,跳过该物品的装入.可以将每种元素看成顶点,物品看成一条边.这样问题就转化为利用并查集求环的情况. 算 ...

  7. UVA - 1160(简单建模+并查集)

    A secret service developed a new kind of explosive that attain its volatile property only when a spe ...

  8. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  9. uva 11728 Alternate Task

    vjudge 上题目链接:uva 11728 其实是个数论水题,直接打表就行: #include<cstdio> #include<algorithm> using names ...

随机推荐

  1. idea中applicationContext-dao.xml文件中Cannot resolve file***** :spring xml model validation问题

    访问不了classpath下的文件夹中的文件 解决办法如下:(问题出在我创建的resources文件夹是一个普通的文件夹) 1.本来是普通的文件夹 2.ctrl+shift+alt+s打开如下界面: ...

  2. 关于jstl和web.xml之间的版本问题

    jstl的版本1.2对应web.xml3.1版本 jstl的版本1.1对应web.xml2.3版本 (IDEA中默认创建的是2.3的web.xml,最好换成3.1版本的) web.xml模板: < ...

  3. 对android中ActionBar中setDisplayHomeAsUpEnabled和setHomeButtonEnabled和setDisplayShowHomeEnabled方法的理解

    转自: http://blog.csdn.net/lovexieyuan520/article/details/9974929 http://blog.csdn.net/cyp331203/artic ...

  4. TabHost创建的2种方式

    一.如果是自定义TabHost步骤如下 1.必须给tabHost跟标签设置一个android:id="@android:id/tabhost"> 2.必须创建TabWidge ...

  5. Yum未完成事务问题

    1.安装 yum-complete-transaction [root@linux-node1 ~]# yum -y install yum-utils 2.清除yum缓存 [root@linux-n ...

  6. Winforn中导入Excel并显示然后获取多选框选中的内容

    场景 使用NPOI导入Excel并赋值给DataTable,然后显示在DataGrdView上,并且添加多选框,然后获取选中行的内容. Winform中使用NPOI实现Excel导入并赋值给DataT ...

  7. 2、顺序表的实现(java代码)

    1.这里实现了简单的顺序表的,为空判断.是否已满判断,插入.删除,查询元素下标等功能 public class Linear_List { private int[] arr; //用来保存数据 pr ...

  8. Http 协议简略

    用户在浏览器中输入一个网址并回车,浏览器会向服务器发送一个http请求,服务器端程序会接受这个请求,并对请求进行相应的处理,然后发送一个回应,浏览器收到回应,再把回应的内容显示到页面,这种请求—相应的 ...

  9. elasticsearch document的索引过程分析

    elasticsearch专栏:https://www.cnblogs.com/hello-shf/category/1550315.html 一.预备知识 1.1.索引不可变 看到这篇文章相信大家都 ...

  10. springboot项目启动报错 url' attribute is not specified and no embedded datasource could be configured

    报错相关信息: 2019-07-22 17:12:48.971 ERROR 8312 --- [ main] o.s.b.d.LoggingFailureAnalysisReporter : **** ...