A secret service developed a new kind of explosive that attain its volatile property only when a specific association of products occurs. Each product is a mix of two different simple compounds, to which we call a binding pair. If N > 2, then mixing N different binding pairs containing N simple compounds creates a powerful explosive. For example, the binding pairs A+B, B+C, A+C (three pairs, three compounds) result in an explosive, while A+B, B+C, A+D (three pairs, four compounds) does not. You are not a secret agent but only a guy in a delivery agency with one dangerous problem: receive binding pairs in sequential order and place them in a cargo ship. However, you must avoid placing in the same room an explosive association. So, after placing a set of pairs, if you receive one pair that might produce an explosion with some of the pairs already in stock, you must refuse it, otherwise, you must accept it. An example. Lets assume you receive the following sequence: A+B, G+B, D+F, A+E, E+G, F+H. You would accept the first four pairs but then refuse E+G since it would be possible to make the following explosive with the previous pairs: A+B, G+B, A+E, E+G (4 pairs with 4 simple compounds). Finally, you would accept the last pair, F+H. Compute the number of refusals given a sequence of binding pairs.

Input

The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line. Instead of letters we will use integers to represent compounds. The input contains several lines. Each line (except the last) consists of two integers (each integer lies between 0 and 105 ) separated by a single space, representing a binding pair. Each test case ends in a line with the number ‘-1’. You may assume that no repeated binding pairs appears in the input.

Output

For each test case, the output must follow the description below. A single line with the number of refusals.

Sample Input

1 2

3 4

3 5

3 1

2 3

4 1

2 6

6 5

-1

Sample Output

3

题解:
  好久没有发博客了,写一道水题。

  首先k和k想到了图论中的环,把每个颜色看成一个点,一个元素看成边,如果出现环就显然不合法,所以并查集判环就可以了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <queue>
#define MAXN 100100
using namespace std;
int x,y,fa[MAXN]; int find(int x){
if(x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
} int main()
{
int x,y;
while(scanf("%d",&x)==){
for(int i=;i<=MAXN-;i++) fa[i]=i;
int cnt=;
while(x!=-){
scanf("%d",&y);
x=find(x),y=find(y);
if(x==y) cnt++;
else fa[x]=y;
scanf("%d",&x);
}
printf("%d\n",cnt);
}
return ;
}

UVA - 1160 X-Plosives的更多相关文章

  1. LA 3644 - X-Plosives ( 也即UVA 1160)

    LA看题 请点击:传送门 UVA 上也有这题 :UVA 1160 - X-Plosives 题目大意就是如果车上存在 k 个简单化合物,正好包含 k 种元素 ,那么它们将有危险,此时你应该拒绝装车. ...

  2. UVA 1569 Multiple

    题意: 给定m个1位数字,要求用这些数字组成n的倍数的最小数字,如果无法组成就输出0 分析: BFS,由于n最大5000,余数最多5000,利用余数去判重,并记录下路径即可 代码: #include ...

  3. UVA 1395 Slim Span

    题意: 要求的是所有生成树中最大边与最小边差值最小的那个. 分析: 其实可以利用最小瓶颈生成树,就是最小生成树这一性质,枚举原图的最小边,然后找相应生成树的最大边 代码: #include <i ...

  4. UVA 1160 - X-Plosives 即LA3644 并查集判断是否存在环

    X-Plosives A secret service developed a new kind ofexplosive that attain its volatile property only ...

  5. UVA - 11400 Lighting System Design

    题文: You are given the task to design a lighting system for a huge conference hall. After doing a lot ...

  6. UVA 1160 X-Plosives

    题意是一次装入物品,物品由两种元素组成,当遇到即将装入的物品与已经装入的物品形成k个物品,k种元素,跳过该物品的装入.可以将每种元素看成顶点,物品看成一条边.这样问题就转化为利用并查集求环的情况. 算 ...

  7. UVA - 1160(简单建模+并查集)

    A secret service developed a new kind of explosive that attain its volatile property only when a spe ...

  8. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  9. uva 11728 Alternate Task

    vjudge 上题目链接:uva 11728 其实是个数论水题,直接打表就行: #include<cstdio> #include<algorithm> using names ...

随机推荐

  1. Day003_linux基础_系统启动过程及系统安装后优化

    Linux系统启动过程: 打开电源开关开机 BIOS自检 MBR引导 grub内核菜单选择 加载内核kernel 运行init进程,系统初始化 然后读取/etc/inittab 配置文件,当前系统所在 ...

  2. web scraper 抓取数据并做简单数据分析

    其实 web scraper 说到底就是那点儿东西,所有的网站都是大同小异,但是都还不同.这也是好多同学总是遇到问题的原因.因为没有统一的模板可用,需要理解了 web scraper 的原理并且对目标 ...

  3. 2018阿里前端 - 认真写下阿里的面筋,祝福大家收到满意的offer(前端向)

    作者:叮!阿里offer请查收!链接:https://www.nowcoder.com/discuss/102509来源:牛客网 首先表达一下对阿里面试官的感谢,以及大公司的气魄——没有因为不是科班出 ...

  4. Springboot中RedisTemplate的操作

    Springboot中RedisTemplate的操作 @Autowired private RedisTemplate redisTemplate; @Autowired private Strin ...

  5. cmd命令查看已连接的WiFi密码

      实验环境:Windows 10.命令提示符(管理员权限) 一.CMD命令查看WiFi密码 使用方法: ①.运行CMD(命令提示符) (确保无线网卡启用状态)②.输入命令查看WiFi配置文件:  # ...

  6. 前端项目自动化构建工具——Webpack入门教程

    参考资料:https://www.webpackjs.com/(中文文档)   https://www.webpackjs.com/(官方文档) 首先有必要说明一下,本文侧重讲解webpack基本配置 ...

  7. Android程序员接下来的路该如何走?

    随着“5G”(第五代移动通信技术)商用进程越来越快,各个芯片和终端厂商们都已经开始布局准备,想必智能手机会是消费者最先能够接触到5G的重要终端,而和其相辅相生的移动互联网也势必会有新的发展. 但是和行 ...

  8. Web之-----弹出确认框控件应用

    引用文件!-------- <link rel="stylesheet" type="text/css" href="@Url.FrontUrl ...

  9. Elasticsearch(9) --- 聚合查询(Bucket聚合)

    Elasticsearch(9) --- 聚合查询(Bucket聚合) 上一篇讲了Elasticsearch聚合查询中的Metric聚合:Elasticsearch(8) --- 聚合查询(Metri ...

  10. [VB.NET Tips]再谈字符串连接之内置池

    CLR自动维护一个称为"内置池"(暂存池)(intern pool)的表,在编译时此表包含程序中声明的每个唯一的字符串常量的单个实例,以及以编程方式创建的String类的任何唯一实 ...