通俗地说逻辑回归【Logistic regression】算法(一)
在说逻辑回归前,还是得提一提他的兄弟,线性回归。在某些地方,逻辑回归算法和线性回归算法是类似的。但它和线性回归最大的不同在于,逻辑回归是作用是分类的。
还记得之前说的吗,线性回归其实就是求出一条拟合空间中所有点的线。逻辑回归的本质其实也和线性回归一样,但它加了一个步骤,逻辑回归使用sigmoid函数转换线性回归的输出以返回概率值,然后可以将概率值映射到两个或更多个离散类。
如果给出学生的成绩,比较线性回归和逻辑回归的不同如下:
- 线性回归可以帮助我们以0-100的等级预测学生的测试分数。线性回归预测是连续的(某个范围内的数字)。
- Logistic回归可以帮助预测学生是否通过。逻辑回归预测是离散的(仅允许特定值或类别)。我们还可以查看模型分类背后的概率值。
一.从回归到分类的核心 --Sigmoid Function
之前介绍线性回归的时候,它的函数是这样样子的:
h(x)=θ0 + θ1 * x1 + θ2 * x2 + θ3 * x3 ...
但这样的函数是没办法进行分类的工作的,所以我们要借助一下其他函数,那就是Sigmoid Function。
我们先来看看这个Sigmoid Function长什么样,Sigmoid Function的数学公式是这样子的:
如果表示在平面坐标轴上呢,那它长这个样子。
这个Sigmoid Function可以将线性的值,映射到[0-1]这个范围中。如果映射结果小于0.5,则认为是负的样本,如果是大于0.5,则认为是正的样本。
比方说要对垃圾邮箱进行分类,分垃圾邮箱和正常邮箱。当这个Sigmoid Function的计算出来后,小于0.5,则认为是垃圾邮箱,大于0.5则是非垃圾邮箱。
原先线性回归的计算公式是这样的:
那么将这个z函数代入到Sigmoid Function中,OK,现在我们就有了一个逻辑回归的函数了。
二.代价函数Cost Function
和线性回归一样,逻辑回归也有代价函数。并且都是通过最小化Cost Function来求得最终解的。
我们先来看单个点的情况,
这个代价函数呢,叫做交叉熵,其中y(i)指的是预测的结果,而hθ(xi)指的是xi这个点原本的值。
那么它具体是什么意思呢,为什么叫做交叉熵?我们举两个极端的例子看看就明白了:
1.xi原始值hθ=1,预测结果,yi=1的情况
这个时候,代价函数的加号右边会被消掉,因为右边(1-y(i))是0,左边部分呢,因为hθ(xi)=1,故而log(1)=0。
y(i)log(hθ(xi)) = 1 * log(0) = 0
也就是说,若xi原始值是1,当预测值y=1的时候,代价函数是0的。这个也比较好理解,代价函数为0就是说预测结果和原始结果完全一致的,没有半点出差错。
2.计算结果,yi=0,原始值hθ=0
这次的结果就和上面的反过来了,因为yi=0,所以左边部分全军覆没,来看右边,
(1-yi) * log(1-hθ(xi)) = 1 * log(0) = 0
因为1-hθ(xi),最终结果还是等于0。
也就是说,这个损失函数,只要原始值与预测结果越相符,损失函数就越大,反之,损失函数就会越小。
以上说的只是一个点的情况,实际的代价函数,是要计算所有点的损失函数的均值,如下所示:
三.梯度下降
和线性回归一样,逻辑回归的解法也可以通过梯度下降来进行求解。梯度下降的目的,是为了最小化代价函数Cost function。
要求使用梯度下降,需要先求解偏导数,以下是求导数的一个具体过程:
而梯度下降的计算方法也和线性回归的计算方法是一样的。只是其中的代价函数,换成了逻辑回归的代价函数。
其中,α右边部分对应我们上面对代价函数求偏导的结果。而α是用来控制训练速率的,这个在线性回归那里已经有说到,这里就不再介绍了。
最终就是对θj不断迭代,直到损失函数降到最小,那就可以求出我们要的θ值了。
四.小结
OK,今天介绍了线性回归和逻辑回归的区别,同样都是回归分析,逻辑回归能完成分类任何的核心,就算使用了Sigmoid Function。
这里留一个小问题,上面所述的逻辑回归,通常是仅仅能够进行二分类,那有没有办法来让逻辑回归实现多分类呢?
下一次将阐述用逻辑回归进行多分类,以及正则化相关内容,并介绍sklearn的逻辑回归参数和用法!!
以上~~
推荐阅读:
通俗得说线性回归算法(一)线性回归初步介绍
通俗得说线性回归算法(二)线性回归初步介绍
Scala 函数式编程指南(一) 函数式思想介绍
通俗地说决策树算法(二)实例解析
大数据存储的进化史 --从 RAID 到 Hadoop Hdfs
C,java,Python,这些名字背后的江湖!
通俗地说逻辑回归【Logistic regression】算法(一)的更多相关文章
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...
- 机器学习 (三) 逻辑回归 Logistic Regression
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- 逻辑回归(Logistic Regression)详解,公式推导及代码实现
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...
- 机器学习(四)--------逻辑回归(Logistic Regression)
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的 线性方程拟合的是连 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...
- 逻辑回归 Logistic Regression
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...
随机推荐
- 利用threading模块开线程
一多线程的概念介绍 threading模块介绍 threading模块和multiprocessing模块在使用层面,有很大的相似性. 二.开启多线程的两种方式 1.创建线程的开销比创建进程的开销小, ...
- 004-python面向对象,错误,调试和测试
---恢复内容开始--- 1.面向对象 面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作 ...
- 『TensorFlow2.0正式版』TF2.0+Keras速成教程·零:开篇简介与环境准备
此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出 ...
- 多线程基础(主要内容转载于https://segmentfault.com/a/1190000014428190)
进程作为资源分配的基本单位 线程作为资源调度的基本单位,是程序的执行单元,执行路径(单线程:一条执行路径,多线程:多条执行路径).是程序使用CPU的最基本单位. 线程有3个基本状态: 执行.就绪.阻塞 ...
- git checkout 提示 “error: The following untracked working tree files would be overwritten by checkout” 解决
问题描述 Windows 或者 macOS 操作系统中,文件名是不区分大小写的.对于已经提交到仓库中的文件修改文件名的大小写,然后又用 git rm 命令将老文件从 Git 仓库删除掉,并保存下新的文 ...
- JVM(三)初始化
字节码指令和符号引用.直接引用 1.主动引用和被动引用 主动引用:虚拟机规定只有满足四个情况的的情况下,才会进行主动引用. 被动引用:除过四种情况的引用是被动引用. 只有主动引用才会初始 ...
- 旧瓶新酒-获取网络资源即爬取下载页面内容(图片、html、css、js等)
这个java获取网络资源以前也写过不少 最近用到又重新写了一个,apache.commons.io中的例子就非常好,但是无法对请求进行详细设置 于是大部分照搬,局部替换以设置请求头 如需更加复杂的设置 ...
- Python+Tornado+Tampermonkey 获取某讯等主流视频网站的会员视频解析播放
近期,<哪吒之魔童降世>在各大视频软件可以看了,然而却是一贯的套路,非会员谢绝观看!!!只能从国内那些五花八门的视频网站上找着看了,或者通过之前本人说的 Chrome 的油猴插件,传送门 ...
- 09-01 Tensorflow1基本使用
目录 Tensorflow基本使用 一.确认安装Tensorflow 二.获取MNIST数据集 三.使用Tensorflow训练--Softmax回归 四.使用Tensorflow训练--卷积神经网络 ...
- Ubuntu16.04安装Docker、nvidia-docker
Ubuntu16.04安装Docker.nvidia-docker Docker安装 1.更换国内软件源,推荐中国科技大学的源,稳定速度快(可选) sudo cp /etc/apt/sources.l ...