四、排序算法总结二(归并排序)(C++版本)
一、什么是归并排序?
归并排序是基于分而治之的思想建立起来的。
所谓的分而治之,也就是将一个数据规模为N的数据集,分解为两个规模大小差不多的数据集(n/2),然而分别处理这两个更小的问题,就相当于解决了总的问题。
二、归并排序的思路。
1-首先将数据分为左右相等的两部分,不断细分,到最后只有单个元素。
2-再将相邻的两个元素集合(只是规模为1)排序,变为 n/2 个规模为2的数据序列。
随后不断的合并数据集并且排序,直到最后得到了一个完整的数据有序序列。
三、一个简单的例子。
下图是一个数据规模为8的数据集的排序过程。
最开始8个数据不断地细分,知道不可再分(数据数目为一)
随后开始进行排序,将相邻的两个数据集排序合并,形成3 6,2 7, 1 5 ,4, 8
随后不断地向上排序,知道合并成一个完整的有序数据序列。
四 算法功能
上面的过程说明了算法需要完成的两个的算法功能
一是对于数据二分的过程,直到不可再分
二是对于两个数据集排序合并,形成一个更大的数据集的过程。
五、算法实现
1-递归版本
#include <stdlib.h>
#include <stdio.h> void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex)
{
int i = startIndex, j=midIndex+, k = startIndex;
while(i!=midIndex+ && j!=endIndex+)
{
if(sourceArr[i] > sourceArr[j])
tempArr[k++] = sourceArr[j++];
else
tempArr[k++] = sourceArr[i++];
}
while(i != midIndex+)
tempArr[k++] = sourceArr[i++];
while(j != endIndex+)
tempArr[k++] = sourceArr[j++];
for(i=startIndex; i<=endIndex; i++)//这里的复制是从头到尾的,
//我之前就是这里出了问题
sourceArr[i] = tempArr[i];
} //内部使用递归
void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex)
{
int midIndex;
if(startIndex < endIndex)
{
midIndex = startIndex + (endIndex-startIndex) / ;//避免溢出int
MergeSort(sourceArr, tempArr, startIndex, midIndex);
MergeSort(sourceArr, tempArr, midIndex+, endIndex);
Merge(sourceArr, tempArr, startIndex, midIndex, endIndex);
}
} int main(int argc, char * argv[])
{
int a[] = {, , , , , , , };
int i, b[];
MergeSort(a, b, , );
for(i=; i<; i++)
printf("%d ", a[i]);
printf("\n");
return ;
}
2-迭代版本
(待补充)
六、复杂度
时间复杂度: O(n log n)
空间复杂度:O(n)
四、排序算法总结二(归并排序)(C++版本)的更多相关文章
- Java排序算法(二)
java排序算法(二) 二.改进排序算法 2.1希尔排序 定义:希尔排序(ShellSort)是插入排序的一种.也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本.希尔排序是非稳定排序算法. ...
- java讲讲几种常见的排序算法(二)
java讲讲几种常见的排序算法(二) 目录 java讲讲几种常见的排序算法(一) java讲讲几种常见的排序算法(二) 堆排序 思路:构建一个小顶堆,小顶堆就是棵二叉树,他的左右孩子均大于他的根节点( ...
- java排序算法(二):直接选择排序
java排序算法(二) 直接选择排序 直接选择排序排序的基本操作就是每一趟从待排序的数据元素中选出最小的(或最大的)一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完,它需要经过n- ...
- 《算法导论》读书笔记之排序算法—Merge Sort 归并排序算法
自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导 ...
- [Swift]八大排序算法(二):快速排序
排序分为内部排序和外部排序. 内部排序:是指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列. 外部排序:指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存 ...
- 数据结构Java版之排序算法(二)
排序按时间复杂度和空间复杂度可分为 低级排序 和 高级排序 算法两种.下面将对排序算法进行讲解,以及样例的展示. 低级排序:冒泡排序.选择排序.插入排序. 冒泡排序: 核心思想,小的数往前移.假设最小 ...
- 【Java】 大话数据结构(17) 排序算法(4) (归并排序)
本文根据<大话数据结构>一书,实现了Java版的归并排序. 更多:数据结构与算法合集 基本概念 归并排序:将n个记录的序列看出n个有序的子序列,每个子序列长度为1,然后不断两两排序归并,直 ...
- 八大排序算法之二希尔排序(Shell Sort)
希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进.希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录 ...
- 排序算法入门之归并排序(java实现)
归并排序是采用分治法的典型应用. 参考<数据结构与算法分析-Java语言描述> 归并排序其实要做两件事: (1)"分解"--将序列每次折半划分. (2)"合并 ...
随机推荐
- Linux之shell详解
Shell是什么 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言.Shell 是指一种应用程序,这个应用程序提供了一个界 ...
- C# 结合 PInvoke 对接 IP 摄像头的笔记
最近做项目的时候,需要对接厂商提供的 IP 摄像头.但是他们只提供了 C++ 的 SDK,没办法,只能开始撸 C# 的 SDK Helper 类.本篇文章主要记录了对接 C++ DLL 需要注意的几个 ...
- 基于Redis消息的订阅发布应用场景
目录 基于Redis消息的订阅发布应用场景 1.应用背景 2.困境 2.1 锁表风险 2.2 实时性差 2.3 增加编程复杂性 2.4 实时效果 3.解决方案 3.1 前端传值给服务端 3.2 服务端 ...
- CVE-2019-0708漏洞复现
前言: 该漏洞前段时间已经热闹了好一阵子了,HW期间更是使用此漏洞来进行钓鱼等一系列活动,可为大家也是对此漏洞的关心程度,接下里就简单的演示下利用此漏洞进行DOS攻击.当然还有RCE的操作,这只演示下 ...
- Android框架式编程之ViewModel
一.ViewModel介绍 ViewModel类是被设计用来以可感知生命周期的方式存储和管理 UI 相关数据.ViewModel中数据会一直存活即使 Activity Configuration发生变 ...
- ftp上传文件,上传的文件大小是0
此问题是最近出现,代码和配置完全没改,试过所有的办法,两天了一直都解决不了,用完弃坑. 防火墙.被动模式主动模式,编码,服务端内存,日志,common-net.jar版本问题,服务端配置,nginx配 ...
- Centos7 下添加开机自启动服务和脚本
1.添加开机自启服务 #设置jenkins服务为自启动服务 systemctl enable jenkins.service #启动jenkins服务 systemctl start jenkins. ...
- SpringCloudGateWay修改请求路径,从注册中心获得服务
SpringCloudGateWay修改请求路径,从注册中心获得服务 @Resource private DiscoveryClient disClient; @Resource p ...
- 以太网驱动的流程浅析(四)-以太网驱动probe流程【原创】
以太网驱动的流程浅析(四)-以太网驱动probe流程 Author:张昺华 Email:920052390@qq.com Time:2019年3月23日星期六 此文也在我的个人公众号以及<Lin ...
- ReactNative: 使用Touchable触摸类组件
一.简介 在应用程序中,最灵魂的功能就是交互.通过给应用程序的组件添加事件来实现交互,进而提高用户体验.然而,ReactNative并不能像Web开发那样可以给大多数的标签元素绑定click事件,例如 ...