题目传送门

题意:现在有一个图,选择一条边,会把边的2个顶点也选起来,最后会的到一个边的集合 和一个点的集合 , 求边的集合 - 点的集合最大是多少。

题解:裸的最大权闭合子图。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = (int)1e9+;
const int N = 2e3 + , M = 1e5;
int head[N], deep[N], cur[N];
int w[M], to[M], nx[M];
int tot;
void add(int u, int v, int val){
w[tot] = val; to[tot] = v;
nx[tot] = head[u]; head[u] = tot++; w[tot] = ; to[tot] = u;
nx[tot] = head[v]; head[v] = tot++;
}
int bfs(int s, int t){
queue<int> q;
memset(deep, , sizeof(deep));
q.push(s);
deep[s] = ;
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = nx[i]){
if(w[i] > && deep[to[i]] == ){
deep[to[i]] = deep[u] + ;
q.push(to[i]);
}
}
}
return deep[t] > ;
}
int Dfs(int u, int t, int flow){
if(u == t) return flow;
for(int &i = cur[u]; ~i; i = nx[i]){
if(deep[u]+ == deep[to[i]] && w[i] > ){
int di = Dfs(to[i], t, min(w[i], flow));
if(di > ){
w[i] -= di, w[i^] += di;
return di;
}
}
}
return ;
} LL Dinic(int s, int t){
LL ans = , tmp;
while(bfs(s, t)){
for(int i = ; i <= t; i++) cur[i] = head[i];
while(tmp = Dfs(s, t, inf)) ans += tmp;
}
return ans;
}
void init(){
memset(head, -, sizeof(head));
tot = ;
}
int main(){
int n, m, s, t;
scanf("%d%d", &n, &m);
init();
s = ; t = m+n+;
for(int i = , v; i <= n; ++i){
scanf("%d", &v);
add(i,t,v);
}
LL ans = ;
for(int i = , v, u, w; i <= m; ++i){
scanf("%d%d%d", &u, &v, &w);
add(n+i, u, inf);
add(n+i, v, inf);
add(s, n+i, w);
ans += w;
}
ans -= Dinic(s,t);
printf("%lld\n", ans);
return ;
}

CodeForces 1082 G Petya and Graph 最大权闭合子图。的更多相关文章

  1. Codeforces 1082 G - Petya and Graph

    G - Petya and Graph 思路: 最大权闭合子图 对于每条边,如果它选了,那么它连的的两个点也要选 边权为正,点权为负,那么就是求最大权闭合子图 代码: #pragma GCC opti ...

  2. codeforces 1082G - Petya and Graph 最大权闭合子图 网络流

    题意: 让你选一些边,选边的前提是端点都被选了,求所有的边集中,边权和-点权和最大的一个. 题解: 对于每个边建一个点,然后就是裸的最大权闭合子图, 结果比赛的时候我的板子太丑,一直T,(不会当前弧优 ...

  3. Petya and Graph/最大权闭合子图、最小割

    原题地址:https://codeforces.com/contest/1082/problem/G G. Petya and Graph time limit per test 2 seconds ...

  4. Petya and Graph(最小割,最大权闭合子图)

    Petya and Graph http://codeforces.com/contest/1082/problem/G time limit per test 2 seconds memory li ...

  5. Codeforces 1082 毛毛虫图构造&最大权闭合子图

    A #include<bits/stdc++.h> using namespace std; typedef long long ll; , MAXM = ; //int to[MAXM ...

  6. CF1082G Petya and Graph(最小割,最大权闭合子图)

    QWQ嘤嘤嘤 感觉是最水的一道\(G\)题了 顺便记录一下第一次在考场上做出来G qwqqq 题目大意就是说: 给你n个点,m条边,让你选出来一些边,最大化边权减点权 \(n\le 1000\) QW ...

  7. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  8. P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图

    题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...

  9. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

随机推荐

  1. 【iOS】this class is not key value coding-compliant for the key ...

    一般此问题 都是由 interface build 与代码中 IBOutlet 的连接所引起的. 可能是在代码中对 IBOutlet 的名称进行了修改,导致 interface build 中的连接实 ...

  2. 【iOS】iOS main() 简介

    C 语言编写的程序,其执行入口都是 main(). 用 Objective-C 语言编写的程序也是这样. main.m 中的代码如下: int main(int argc, char * argv[] ...

  3. 1. 源码分析---SOFARPC可扩展的机制SPI

    这几天离职在家,正好没事可以疯狂的输出一下,本来想写DUBBO的源码解析的,但是发现写DUBBO源码的太多了,所以找一个写的不那么多的框架,所以就选中SOFARPC这个框架了. SOFARPC是蚂蚁金 ...

  4. 关于Unity 中对UGUI制作任务系统的编程

    版权声明: 本文原创发布于博客园"优梦创客"的博客空间(网址:http://www.cnblogs.com/raymondking123/)以及微信公众号"优梦创客&qu ...

  5. Linux 根分区扩容

    扩容分区之前,首先要保证当前有闲置空间 1. 查看当前现有分区情况 df -lah 可以看出当前根分区只剩 6.4 G 可用 2. 查看当前磁盘情况 fdisk -l 可以看出有 30G的未分配空间 ...

  6. jdk安装及环境配置

    1.下载对应的安装包(我们公司用的是jdk 1.8) 2.选择对应版本,点击安装,在选择安装位置的时候,选择自己对应存放的位置,其他都点击下一步就行了,先安装jdk,后安装jre 3.环境变量,选择 ...

  7. Jersey用户指南学习笔记1

    Jersey用户指南是Jersey的官方文档, 英文原版在这:https://jersey.github.io/documentation/latest/index.html 中文翻译版在这:http ...

  8. asp.net core 从单机到集群

    asp.net core 从单机到集群 Intro 这篇文章主要以我的活动室预约的项目作为示例,看一下一个 asp.net core 应用从单机应用到分布式应用需要做什么. 示例项目 活动室预约提供了 ...

  9. 3.php基础(控制语句,函数,数组遍历)

    if条件判断语句 结构一:只判断true,不管false 结构二:既判断true,也判断false(二选一) 结构三:多条件判断 switch多分支结构 Switch语法结构说明: l Switch的 ...

  10. .net测试篇之测试神器Autofixture在几个复杂场景下的使用示例以及与Moq结合

    系列目录 为String指定一个值. 在第三节里我们讲了如何使用自定义配置加上一个自定义算法生成一个自定义字符串,然而有些时候我们仅仅是需要某个字段是有意义的,这个时候随便生成的字符串也满足不了我们的 ...