SDU暑期集训排位(4)
SDU暑期集训排位(4)
C. Pick Your Team
题意 有 \(n\) 个人,每个人有能力值,A 和 B 轮流选人,A 先选,B 选人按照一种给出的优先级,
A 可以随便选。A 想最大化己方能力值。
做法
- 划分方案合法的充要条件:任何前缀中,\(被 B 选择的人 - 被 A 选择的人 > -1\)
- 考虑 DP,\(dp[i][j]\) 表示考虑前 \(i\) 个人,\(j\) 个人被 B 选择了,A 和 B 最大分差。
- 考虑转移,枚举 \(i+1\) 个人归属即可。
D. Piece of Cake
题意 一个凸多边形上随机选k个顶点,求构成的凸多边形的面积的期望
做法
- 看成总面积减去一些由连续的几个点组成的多边形的面积
- 由x个点组成的多边形被减去的概率为\(\frac{C_{n-x}^{k-2}}{C_n^k}\)
- 这个概率要先约一约再算,而且要乘除交替计算,否则会爆精度
- 没注意复杂度T两发实属智障
E.Busy Board
题意 砸
做法
各种特判套在一起就行了,无法用语言描述
F. It's a Mod, Mod, Mod, Mod World
题意 求 \(\sum_{i=1}^{n}[pi\%q]\)
做法
- GCD 的经典应用。
- \(\sum_{i=1}^{n}[pi\%q] = \sum_{i=1}^{n} (pi-[\frac{pi}{q}]q)=(\sum_{i=1}^{n}pi)-q(\sum_{i=1}^{n}[\frac{pi}{q}])\)
- 只需求 \(f(n,p,q)=\sum_{i=1}^{n}[\frac{pi}{q}]\)
- 若 \(p\geq q\) 可递归到 \(f(n,p\%q,q)\)
- 若 \(p<q\) 可枚举 \(x\),统计 \([\frac{pi}{q}]\geq x\) 的 \(i\) 方案数,即可交换 \(p,q\)
- 更详细介绍见2009年论文 金斌《欧几里得算法的应用》
G.Monotony
题意 给定一个矩阵,问其有多少个子矩阵满足行列单调性
题解
- 枚举选哪些行
- 特判哪些列在选了这些行之后是合法的
- 考虑到,只选两列就能确定行的单调性,所以可以\(DP\)
- \(DP[mask][j]\) : 选了第\(j\)列,并且行的单调性为\(mask\)的方案数
- 然后枚举下一个\(k\),往后转移即可
I.Intersecting Rectangles
题意 给定n个矩形,问是否有交
做法
- 扫描线
- 从小到大枚举横坐标,如果是矩形左边界,查询上下边界内是否有点被标记,有的话直接输出yes,否则把上下边界打上标记,如果是右边界,消去边界
- 然后交换x,y坐标,再来一次
J. Cutting Strings
upsolved
题意 给一个字符串,可以截取下 \(k\) 段,使得字典序最大。
做法
- idea 比较简单,逐位考虑,我们先想让 'z' 字符的前缀尽可能长,以此为前提接下来想让之后的 'y' 尽可能长........
- 递归地求解 \(solve(pos,k,ch)\),在 \(suffix(pos)\) 中,我们想构造尽可能长的
ch前缀,至多可以切 \(k\) 刀。- 如果 s[pos] = ch,第一段连续的 ch 一定可以拿,我们可以递归到 \(solve(nex,k,ch)\),\(nex\) 为下一个不为 ch 的位置。
- 否则,考虑连续的 ch 的段,设这些段分别为 \([l_1,r_1],[l_2,r_2]....[l_m,r_m]\)
- 如果 \(k \geq m\),那么这些 \(suffix(pos)\) 中所有的 \(ch\) 都可以加入到答案中,递归到 \(solve(r_m + 1, k-m, ch-1)\)
- 否则,我们可以在这 \(m\) 段中,枚举最后一个区间的位置,堆维护前 \(k-1\) 大值,再枚举最后一个区间的位置,在可能成为答案的后缀中挑选字典序最大的即可。
K. Subsequences in Substrings
做法 序列自动机,预处理位置 \(x\) 下一个字符 \(ch\) 在哪,枚举起点,然后往后跳。复杂度 \(O(|S|*|T|)\)
M. XOR Sequences
upsolved
题意 给定\(p_0,p_1,...,p_{2^m-1}\)求有多少长度为n的序列\({x}\)满足\(p_i=argmax\ i⊕x_j\)
做法
- 考虑从顶向下建x的trie树
- 对于当前点,如果左树和右树的每个元素对应相等,那么只有左儿子或者只有右儿子,答案乘2,然后递归建左儿子或右儿子
- 不是对应相等的话说明既有左儿子又有右儿子,需要左树和右树的元素没有交集,然后递归建左儿子和右儿子
- 此题原榜过穿了,是个简单题,就是看起来很吓人
- 当时一看就没思路,其实算下样例也就会了
SDU暑期集训排位(4)的更多相关文章
- SDU暑期集训排位(9)
SDU暑期集训排位(9) G. Just Some Permutations 基础 DP 练习部分 定义 \(f(S)\),表示让 S 中的人全 happy 的方案数. \(dp[i][j]\) 表示 ...
- SDU暑期集训排位(5)
SDU暑期集训排位(5) A. You're in the Army Now 题意 类似选志愿.每个人有 mark,有优先级从高到低的志愿. 做法 定睛一看,鲨鼻题.然后 WA. 为什么会 WA 呢? ...
- SDU暑期集训排位(8)
A. A Giveaway 签到 B. Game of XOR 做法 dp[G][L][R]表示在倒数第G代,左边的数是L,右边的数是R,下面共有多少个0和1 区间和转换成两次前缀和和一次单点查询 利 ...
- SDU暑期集训排位(3)
B. Mysterious LCM 做法 保留 \(a_i|x\) 的元素,其它元素解体. \(a_i\) 的某个质因子的指数,要和 \(x\) 的这个质因子一样多,才有贡献,否则这个质因子它在划水啊 ...
- SDU暑期集训排位(2)
A. Art solved by sdcgvhgj 3min 签到 B. Biology solved by sdcgvhgj 85min 暴力 C - Computer Science solved ...
- 2014年CCNU-ACM暑期集训总结
2014年CCNU-ACM暑期集训总结 那个本期待已久的暑期集训居然就这种.溜走了.让自己有点措手不及.很多其它的是对自己的疑问.自己是否能在ACM这个领域有所成就.带着这个疑问,先对这个暑假做个总结 ...
- 8.10 正睿暑期集训营 Day7
目录 2018.8.10 正睿暑期集训营 Day7 总结 A 花园(思路) B 归来(Tarjan 拓扑) C 机场(凸函数 点分治) 考试代码 A B C 2018.8.10 正睿暑期集训营 Day ...
- 8.6 正睿暑期集训营 Day3
目录 2018.8.6 正睿暑期集训营 Day3 A 亵渎(DP) B 绕口令(KMP) C 最远点(LCT) 考试代码 A B C 2018.8.6 正睿暑期集训营 Day3 时间:5h(实际) 期 ...
- 8.9 正睿暑期集训营 Day6
目录 2018.8.9 正睿暑期集训营 Day6 A 萌新拆塔(状压DP) B 奇迹暖暖 C 风花雪月(DP) 考试代码 A B C 2018.8.9 正睿暑期集训营 Day6 时间:2.5h(实际) ...
随机推荐
- Web容器启动中执行某个Java类
1.监听(Listener) <!-- 配置监听 --> <listener> <listener-class>com.xian.jdbc.GetPropertie ...
- Java VisualVM监控远程JVM
我们经常需要对我们的开发的软件做各种测试, 软件对系统资源的使用情况更是不可少, 目前有多个监控工具, 相比JProfiler对系统资源尤其是内存的消耗是非常庞大,JDK1.6开始自带的VisualV ...
- vue-cli中的跨域之proxytable
为什么会有跨域? 浏览器有一个叫做同源策略的东西.同源策略限制了从同一个源加载的文档或脚本如何与来自另一个源的资源进行交互.这是一个用于隔离潜在恶意文件的重要安全机制. 同源策略规定了如果两个页面的协 ...
- Docker 更新版本
Docker 更新版本 原来版本 1.10 更新后的版本 19.03.1 更新 Docker 版本需要注意的问题: 注意系统是否支持新版本的储存驱动. 19.03.01 版本默认使用的储存驱动是 ov ...
- 算法与数据结构基础 - 二叉树(Binary Tree)
二叉树基础 满足这样性质的树称为二叉树:空树或节点最多有两个子树,称为左子树.右子树, 左右子树节点同样最多有两个子树. 二叉树是递归定义的,因而常用递归/DFS的思想处理二叉树相关问题,例如Leet ...
- java线程池,阿里为什么不允许使用Executors?
带着问题 阿里Java代码规范为什么不允许使用Executors快速创建线程池? 下面的代码输出是什么? ThreadPoolExecutor executor = new ThreadPoolExe ...
- 写论文的第二天 Hbase集群搭建
日志______2019.1.24 Hbase分布式搭建 注意:hbase的使用基于hadoop,开启以及关闭需要注意顺序,由于我是的是自带的zookeeper,说以开启关闭顺序应如下 启动:hado ...
- 二阶段js 入门知识点 自我总结复习
二阶段自我总复习 1.javascript基础 : 客户端 安全性 跨平台 脚本语言 三大结构: 顺序 .选择.循环 顺序:运算符和表达式 ...
- 分享:个人APP(非企业资质)的微信登录方案
目前微信开放平台个人主体类APP不支持开通微信登录,那么个人开发者如何解决微信登录的问题呢?目前有一种替代方案是用微信小程序作为媒介来达到微信登录的目的. 微信小程序的登录无需企业资质,同时登录后返回 ...
- Nginx + fastcgi + php 的原理与关系
CGI:Common Gateway Interface 公共网关接口,web服务器和脚本语言通信的一个标准.接口.协议[协议] FastCGI:CGI协议的升级版[协议] PHP-CGI: 实现了C ...