原文链接:http://www.one2know.cn/nlp17/

  • 数据集

    scikit-learn中20个新闻组,总邮件18846,训练集11314,测试集7532,类别20
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
x_train = newsgroups_train.data
x_test = newsgroups_test.data
y_train = newsgroups_train.target
y_test = newsgroups_test.target
print('List of all 20 categories:')
print(newsgroups_train.target_names,'\n')
print('Sample Email:')
print(x_train[0])
print('Sample Target Category:')
print(y_train[0])
print(newsgroups_train.target_names[y_train[0]])

输出:

List of all 20 categories:
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] Sample Email:
From: lerxst@wam.umd.edu (where's my thing)
Subject: WHAT car is this!?
Nntp-Posting-Host: rac3.wam.umd.edu
Organization: University of Maryland, College Park
Lines: 15 I was wondering if anyone out there could enlighten me on this car I saw
the other day. It was a 2-door sports car, looked to be from the late 60s/
early 70s. It was called a Bricklin. The doors were really small. In addition,
the front bumper was separate from the rest of the body. This is
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info you
have on this funky looking car, please e-mail. Thanks,
- IL
---- brought to you by your neighborhood Lerxst ----
  • 实现步骤
  1. 预处理

    1)去标点符号

    2)分词

    3)单词都转化成小写

    4)去停用词

    5)保留长度至少为3的词

    6)提取词干

    7)词性标注

    8)词形还原
  2. TF-IDF向量转换
  3. 深度学习模型的训练和测试
  4. 模型评估和结果分析
  • 代码
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
x_train = newsgroups_train.data
x_test = newsgroups_test.data
y_train = newsgroups_train.target
y_test = newsgroups_test.target
# print('List of all 20 categories:')
# print(newsgroups_train.target_names,'\n')
# print('Sample Email:')
# print(x_train[0])
# print('Sample Target Category:')
# print(y_train[0])
# print(newsgroups_train.target_names[y_train[0]]) import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import string
import pandas as pd
from nltk import pos_tag
from nltk.stem import PorterStemmer def preprocessing(text):
# 标点都换成空格,再以空格分割,在以空格为分割合并所以元素
text2 = ' '.join(''.join([' ' if ch in string.punctuation else ch for ch in text]).split())
# 分词
tokens = [word for sent in nltk.sent_tokenize(text2) for word in nltk.word_tokenize(sent)]
tokens = [word.lower() for word in tokens]
stopwds = stopwords.words('english')
# 过滤掉 停用词 和 长度<3 的token
tokens = [token for token in tokens if token not in stopwds and len(token) >= 3]
# 词干提取
stemmer = PorterStemmer()
tokens = [stemmer.stem(word) for word in tokens]
# 词性标注
tagged_corpus = pos_tag(tokens)
Noun_tags = ['NN','NNP','NNPS','NNS'] # 普通名词 专有名词 专有名词复数 普通名词复数
Verb_tags = ['VB','VBD','VBG','VBN','VBP','VBZ']
# 动词 动词过去式 动词现在分词 动词过去分词 动词现在时 动词现在时第三人称单数
lemmatizer = WordNetLemmatizer()
def prat_lemmatize(token,tag):
if tag in Noun_tags:
return lemmatizer.lemmatize(token,'n')
elif tag in Verb_tags:
return lemmatizer.lemmatize(token,'v')
else:
return lemmatizer.lemmatize(token,'n')
pre_proc_text = ' '.join([prat_lemmatize(token,tag) for token,tag in tagged_corpus])
return pre_proc_text # 处理数据集
x_train_preprocessed = []
for i in x_train:
x_train_preprocessed.append(preprocessing(i))
x_test_preprocessed = []
for i in x_test:
x_test_preprocessed.append(preprocessing(i)) # 得到每个文档的TF-IDF向量
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',
max_features=10000,strip_accents='unicode',norm='l2')
x_train_2 = vectorizer.fit_transform(x_train_preprocessed).todense() # 稀疏矩阵=>密集!?
x_test_2 = vectorizer.transform(x_test_preprocessed).todense() # 导入深度学习模块
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense,Dropout,Activation
from keras.optimizers import Adadelta,Adam,RMSprop
from keras.utils import np_utils np.random.seed(0)
nb_classes = 20
batch_size = 64 # 批尺寸
nb_epochs = 20 # 迭代次数 # 将20个类变成one-hot编码向量
Y_train = np_utils.to_categorical(y_train,nb_classes) # 建立keras模型 3个隐藏层 神经元个数分别为1000 500 50,每层dropout均为50%,优化算法为Adam
model = Sequential()
model.add(Dense(1000,input_shape=(10000,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(500))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(50))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam')
# loss=交叉熵损失函数 optimizer优化程序=adam
print(model.summary()) # 模型训练
model.fit(x_train_2,Y_train,batch_size=batch_size,epochs=nb_epochs,verbose=1) # 模型预测
y_train_predclass = model.predict_classes(x_train_2,batch_size=batch_size)
y_test_preclass = model.predict_classes(x_test_2,batch_size==batch_size)
from sklearn.metrics import accuracy_score,classification_report
print("\n\nDeep Neural Network - Train accuracy:",round(accuracy_score(y_train,y_train_predclass),3))
print("\nDeep Neural Network - Test accuracy:",round(accuracy_score(y_test,y_test_preclass),3))
print("\nDeep Neural Network - Train Classification Report")
print(classification_report(y_train,y_train_predclass))
print("\nDeep Neural Network - Test Classification Report")
print(classification_report(y_test,y_test_preclass))

输出:

Using TensorFlow backend.
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263:
colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a
future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From
D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout
(from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a
future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type)                 Output Shape              Param #   =================================================================
dense_1 (Dense)              (None, 1000)              10001000 
_________________________________________________________________ activation_1 (Activation)    (None, 1000)              0        
_________________________________________________________________ dropout_1 (Dropout)          (None, 1000)              0        
_________________________________________________________________ dense_2 (Dense)              (None, 500)               500500   
_________________________________________________________________ activation_2 (Activation)    (None, 500)               0        
_________________________________________________________________ dropout_2 (Dropout)          (None, 500)               0        
_________________________________________________________________ dense_3 (Dense)              (None, 50)                25050    
_________________________________________________________________ activation_3 (Activation)    (None, 50)                0        
_________________________________________________________________ dropout_3 (Dropout)          (None, 50)                0        
_________________________________________________________________ dense_4 (Dense)              (None, 20)                1020     
_________________________________________________________________
activation_4 (Activation)    (None, 20)                0  =================================================================
Total params: 10,527,570
Trainable params: 10,527,570
Non-trainable params:0
______________________________________________________________
None
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from
tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/20
2019-07-06 23:03:46.934966: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2    64/11314 [..............................] - ETA: 4:41 - loss: 2.9946
  128/11314 [..............................] - ETA: 2:43 - loss: 2.9948
  192/11314 [..............................] - ETA: 2:03 - loss: 2.9951
  256/11314 [..............................] - ETA: 1:43 - loss: 2.9947
  320/11314 [..............................] - ETA: 1:32 - loss: 2.9938
此处省略一堆epoch的一堆操作 Deep Neural Network - Train accuracy: 0.999
Deep Neural Network - Test accuracy: 0.811 Deep Neural Network - Train Classification Report
              precision    recall  f1-score   support            0       1.00      1.00      1.00       480
           1       1.00      0.99      1.00       584
           2       0.99      1.00      1.00       591
           3       1.00      1.00      1.00       590
           4       1.00      1.00      1.00       578
           5       1.00      1.00      1.00       593
           6       1.00      1.00      1.00       585
           7       1.00      1.00      1.00       594
           8       1.00      1.00      1.00       598
           9       1.00      1.00      1.00       597
          10       1.00      1.00      1.00       600
          11       1.00      1.00      1.00       595
          12       1.00      1.00      1.00       591
          13       1.00      1.00      1.00       594
          14       1.00      1.00      1.00       593
          15       1.00      1.00      1.00       599
          16       1.00      1.00      1.00       546
          17       1.00      1.00      1.00       564
          18       1.00      1.00      1.00       465
          19       1.00      1.00      1.00       377     accuracy                           1.00     11314
   macro avg       1.00      1.00      1.00     11314
weighted avg       1.00      1.00      1.00     11314 Deep Neural Network - Test Classification Report
              precision    recall  f1-score   support            0       0.78      0.78      0.78       319
           1       0.70      0.74      0.72       389
           2       0.68      0.69      0.68       394
           3       0.71      0.69      0.70       392
           4       0.82      0.76      0.79       385
           5       0.84      0.74      0.78       395
           6       0.73      0.87      0.80       390
           7       0.85      0.86      0.86       396
           8       0.93      0.91      0.92       398
           9       0.89      0.91      0.90       397
          10       0.96      0.97      0.96       399
          11       0.87      0.95      0.91       396
          12       0.69      0.72      0.70       393
          13       0.88      0.77      0.82       396
          14       0.83      0.92      0.87       394
          15       0.91      0.84      0.88       398
          16       0.78      0.83      0.80       364
          17       0.97      0.87      0.92       376
          18       0.74      0.66      0.70       310
          19       0.59      0.62      0.61       251     accuracy                           0.81      7532
   macro avg       0.81      0.81      0.81      7532
weighted avg       0.81      0.81      0.81      7532

NLP(十七) 利用DNN对Email分类的更多相关文章

  1. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  2. 斯坦福深度学习与nlp第四讲词窗口分类和神经网络

    http://www.52nlp.cn/%E6%96%AF%E5%9D%A6%E7%A6%8F%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8Enlp%E7%A ...

  3. NLTK学习笔记(六):利用机器学习进行文本分类

    目录 一.监督式分类:建立在训练语料基础上的分类 特征提取器和朴素贝叶斯分类器 过拟合:当特征过多 错误分析 二.实例:文本分类和词性标注 文本分类 词性标注:"决策树"分类器 三 ...

  4. 百度开源其NLP主题模型工具包,文本分类等场景可直接使用L——LDA进行主题选择本质就是降维,然后用于推荐或者分类

    2017年7月4日,百度开源了一款主题模型项目,名曰:Familia. InfoQ记者第一时间联系到百度Familia项目负责人姜迪并对他进行采访,在本文中,他将为我们解析Familia项目的技术细节 ...

  5. php利用递归函数实现无限级分类

    相信很多学php的很多小伙伴都会尝试做一个网上商城作为提升自己技术的一种途径.各种对商品分类,商品名之类的操作应该是得心应手,那么就可以尝试下无限级分类列表的制作了. 什么是无限级分类? 无限级分类是 ...

  6. 利用CART算法建立分类回归树

    常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...

  7. php之利用递归写无限极分类

    <?php //无限极分类 //parent 的值,是该栏目的父栏目的id 反之是 /*0 安徽 合肥 北京 海淀 中关村 上地 河北 石家庄 */ $area = array( array(' ...

  8. 利用CNN进行多分类的文档分类

    # coding: utf-8 import tensorflow as tf class TCNNConfig(object): """CNN配置参数"&qu ...

  9. 利用sklearn对多分类的每个类别进行指标评价

      今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score).   对于 ...

随机推荐

  1. 第二章 :初识MySQL

    一.MySQL 1. MySQL的版本 社区版 企业帮 2.MySQL的优势 1.运行速度快 2.使用成本低 3.容易使用 4.可移植性高 5.适用更多用户 二.默认字符集设置 1.Standard ...

  2. Divide and Conquer

    1 2 218 The Skyline Problem     最大堆   遍历节点 public List<int[]> getSkyline(int[][] buildings) { ...

  3. 【Java】Map

    今天用到了键-值对,于是想起了 Java 的 Map,由于之前并不很熟悉,就看了下源码,如下: /* * Copyright (c) 1997, 2006, Oracle and/or its aff ...

  4. docker的基本安装和命令详解

    docker的安装 yum install docker-io docker的启动 /bin/systemctl start docker.service docker查找镜像 docker sear ...

  5. C++单继承、多继承情况下的虚函数表分析

    C++的三大特性之一的多态是基于虚函数实现的,而大部分编译器是采用虚函数表来实现虚函数,虚函数表(VTAB)存在于可执行文件的只读数据段中,指向VTAB的虚表指针(VPTR)是包含在类的每一个实例当中 ...

  6. Gridea+GitHub搭建个人博客

    某日闲余时间看到一篇介绍Gridea博客平台的文章,大概看了一下觉得此平台还不错,随即自己进入Gridea官网瞅了瞅.哇,这搭建过程也太简单了吧,比Hexo博客搭建要容易很多,而且还有后台管理客户端, ...

  7. str_replace导致的注入问题汇总

    研究了下replace的注入安全问题. 一般sql注入的过滤方式就是引用addslashes函数进行过滤. 他会把注入的单引号转换成\',把双引号转换成\",反斜杠会转换成\\等 写一段ph ...

  8. 图解Redis之数据结构篇——压缩列表

    前言     同整数集合一样压缩列表也不是基础数据结构,而是 Redis 自己设计的一种数据存储结构.它有点儿类似数组,通过一片连续的内存空间,来存储数据.不过,它跟数组不同的一点是,它允许存储的数据 ...

  9. Redhat 离线安装 Docker (Community from binaries)

    需求 在离线环境安装Docker (Community版),因为Enterprise版要花钱.当然资金充裕的客户可参考https://docs.docker.com/install/linux/doc ...

  10. 【Java例题】6.1 进制转换

    1.进制转换.输入一个某种进制的整数,将其转换为其它进制的整数.说明:仅考虑十.二.八和十六进制. package chapter6; import java.util.*; public class ...