[b0004] Hadoop 版hello word mapreduce wordcount 运行
目的:
初步感受一下hadoop mapreduce
环境:
hadoop 2.6.4
1 准备输入文件
paper.txt 内容一般为英文文章,随便弄点什么进去
hadoop@ssmaster:~$ hadoop fs -mkdir /input
hadoop@ssmaster:~$ ls
Desktop Documents Downloads examples.desktop hadoop-2.6..tar.gz Music paper.txt Pictures Public Templates Videos
hadoop@ssmaster:~$ hadoop fs -put paper.txt /input
hadoop@ssmaster:~$ hadoop fs -ls /input
Found items
-rw-r--r-- hadoop supergroup -- : /input/paper.txt
注意:输出目录/output 不用提前创建,程序会自动做这一步
2 执行
hadoop@ssmaster:~$ hadoop jar /opt/hadoop-2.6./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6..jar wordcount /input /output
// :: INFO client.RMProxy: Connecting to ResourceManager at ssmaster/192.168.249.144:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1477208120905_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1477208120905_0001
// :: INFO mapreduce.Job: The url to track the job: http://ssmaster:8088/proxy/application_1477208120905_0001/
// :: INFO mapreduce.Job: Running job: job_1477208120905_0001
// :: INFO mapreduce.Job: Job job_1477208120905_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
6/10/23 00:51:38 INFO mapreduce.Job: map 0% reduce 0%
16/10/23 00:52:17 INFO mapreduce.Job: map 100% reduce 0%
16/10/23 00:52:39 INFO mapreduce.Job: map 100% reduce 100%
16/10/23 00:52:41 INFO mapreduce.Job: Job job_1477208120905_0001 completed successfully
16/10/23 00:52:41 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=2061
FILE: Number of bytes written=217797
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1863
HDFS: Number of bytes written=1425
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=35792
Total time spent by all reduces in occupied slots (ms)=18540
Total time spent by all map tasks (ms)=35792
Total time spent by all reduce tasks (ms)=18540
Total vcore-milliseconds taken by all map tasks=35792
Total vcore-milliseconds taken by all reduce tasks=18540
Total megabyte-milliseconds taken by all map tasks=36651008
Total megabyte-milliseconds taken by all reduce tasks=18984960
Map-Reduce Framework
Map input records=11
Map output records=303
Map output bytes=2969
Map output materialized bytes=2061
Input split bytes=101
Combine input records=303
Combine output records=158
Reduce input groups=158
Reduce shuffle bytes=2061
Reduce input records=158
Reduce output records=158
Spilled Records=316
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=1093
CPU time spent (ms)=5550
Physical memory (bytes) snapshot=442781696
Virtual memory (bytes) snapshot=1448112128
Total committed heap usage (bytes)=276299776
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1762
File Output Format Counters
Bytes Written=1425
可以从Web监控页面查看执行状态
http://ssmaster:8088/cluster
Cluster Metrics
Apps Submitted | Apps Pending | Apps Running | Apps Completed | Containers Running | Memory Used | Memory Total | Memory Reserved | VCores Used | VCores Total | VCores Reserved | Active Nodes | Decommissioned Nodes | Lost Nodes | Unhealthy Nodes | Rebooted Nodes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 2 | 3 GB | 8 GB | 0 B | 2 | 8 | 0 | 1 | 0 | 0 | 0 | 0 |
20
40
60
80
100
entries
ID
|
User
|
Name
|
Application Type
|
Queue
|
StartTime
|
FinishTime
|
State
|
FinalStatus
|
Progress
|
Tracking UI
|
Blacklisted Nodes
|
---|---|---|---|---|---|---|---|---|---|---|---|
application_1477208120905_0001 | hadoop | word count | MAPREDUCE | default | Sun, 23 Oct 2016 07:51:13 GMT | N/A | RUNNING | UNDEFINED | ApplicationMaster | 0 |
3 查看输出结果
hadoop@ssmaster:~$ hadoop fs -ls /output
Found items
-rw-r--r-- hadoop supergroup -- : /output/_SUCCESS
-rw-r--r-- hadoop supergroup -- : /output/part-r-
hadoop@ssmaster:~$ hadoop fs -cat /output/part-r-
Always
Dream
There
a
all
along
always
...........
...........
Q 总结
非常简单,没什么感觉。
后续:
- 自己编写mapreduce wordcount 程序
- 搭建一个纯分布式,同样的程序处理一个大文件,观察一下速度
[b0004] Hadoop 版hello word mapreduce wordcount 运行的更多相关文章
- [b0013] Hadoop 版hello word mapreduce wordcount 运行(三)
目的: 不用任何IDE,直接在linux 下输入代码.调试执行 环境: Linux Ubuntu Hadoop 2.6.4 相关: [b0012] Hadoop 版hello word mapred ...
- [b0012] Hadoop 版hello word mapreduce wordcount 运行(二)
目的: 学习Hadoop mapreduce 开发环境eclipse windows下的搭建 环境: Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到ecl ...
- Hadoop版Helloworld之wordcount运行示例
1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...
- Hadoop集群WordCount运行详解(转)
原文链接:Hadoop集群(第6期)_WordCount运行详解 1.MapReduce理论简介 1.1 MapReduce编程模型 MapReduce采用"分而治之"的思想,把对 ...
- hadoop 2.7.3本地环境运行官方wordcount
hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...
- Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序. 运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world. 1. 首先确认启动的正常:运行 s ...
- (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序
配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一. 需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...
- hadoop笔记之MapReduce的运行流程
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...
- Hadoop(六)MapReduce的入门与运行原理
一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...
随机推荐
- spring一个标准的xml文件头
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- textarea中文本高亮选中
最近在实现原文/译文句段高亮对比显示,和有道翻译类似,如下图所示: 最初的解决方案是采用富文本编辑器,把所有句段信息都用HTML标签包裹,操作空间比较大,页面上需要的功能几乎都可以实现,但是由此带来了 ...
- JavaScript学习笔记-----NaN、isNan
NaN / Number.NaN 全局属性 NaN 的值表示不是一个数字(Not-A-Number), NaN 属性的初始值就是 NaN,和 Number.NaN 的值一样. 在现代浏览器中(ES ...
- Dynamics 365 CE Update消息PostOperation阶段Image的尝试
我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...
- Android 多选列表对话框 setMultiChoiceItems
private Button button; private final CharSequence items[] = { "北京", "上海", " ...
- Django 资源 与 知识 Django中自建脚本并使用Django环境 model中的save()方法说明 filter()用法
Django 资源 与 知识 Django中自建脚本并使用Django环境 model中的save()方法说明 filter()用法 2018/11/06 Chenxin 资料说明 Django基础入 ...
- P1005 Spell It Right
# P1005 Spell It Right 原题 Given a non-negative integer N, your task is to compute the sum of all the ...
- Hadoop HA 架构
为什么要用集群? 企业里面,多台机器 伪分布式 每一个角色都是一个进程 HDFS: NN SNN DN YARN: RM NM 大数据所有组件, 都是主从架构 master-slave HDFS读写请 ...
- fastadmin中js是如何调用的
想要了解fastadmin中的js是怎么调用的,就应该先了解RequireJs. RequireJs是模块化工具,每一个我们自己的js文件或者库都可以看成是一个模块,按需引入.写法如下: <sc ...
- xadmin进行全局配置(修改模块名为中文以及其他自定义的操作步骤)
1.实现自定义配置和收缩: 在apps->users->adminx.py中操作如下图内容 2.改成中文 操作如下图所示: 图1: 图2: run重启,刷新页面即可实现如下图: 接下来 ...