在上一部分《【python数据分析实战】电影票房数据分析(一)数据采集》 已经获取到了2011年至今的票房数据,并保存在了mysql中。

本文将在实操中讲解如何将mysql中的数据抽取出来并做成动态可视化。

图1 每年的月票房走势图

第一张图,我们要看一下每月的票房走势,毫无疑问要做成折线图,将近10年的票房数据放在一张图上展示。

数据抽取:

采集到的票房数据是按天统计的,并且我们只看正常上映的和点映的,其他如重映等场次均不在本次统计内。

因此我们先对mysql中的数据releaseInfo字段进行筛选,然后根据上映年份和月份进行分组聚合,得到10年内每月的票房数据。

用sql取到数据后,再将不同年份的数据分别放入list中,原始数据是以"万"为单位的str,这里我们折算为以"亿"为单位的float。

构造图像:

x轴数据为年份,

再分别将不同年份的票房数据添加到y轴中,

最后配置下图像的属性即可。

config = {...}    # db配置省略
conn = pymysql.connect(**config)
cursor = conn.cursor()
sql = '''
select substr(`date`,1,4) year,
substr(`date`,5,2) month,
round(sum(`boxInfo`),2) monthbox
from movies_data
where (substr(`releaseInfo`,1,2) = '上映' or `releaseInfo`='点映' )
group by year,month order by year,month
'''
cursor.execute(sql)
data = cursor.fetchall()
x_data = list(set([int(i[1]) for i in data]))
x_data.sort()
x_data = list(map(str, x_data))
y_data1 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2011']
y_data2 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2012']
y_data3 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2013']
y_data4 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2014']
y_data5 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2015']
y_data6 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2016']
y_data7 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2017']
y_data8 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2018']
y_data9 = [round(int(i[2]) / 10000, 2) for i in data if i[0] == '2019']
cursor.close()
conn.close() def line_base() -> Line:
c = (
Line(init_opts=opts.InitOpts(height="600px", width="1300px"))
.add_xaxis(x_data)
.add_yaxis("2011", y_data1)
.add_yaxis("2012", y_data2)
.add_yaxis("2013", y_data3)
.add_yaxis("2014", y_data4)
.add_yaxis("2015", y_data5)
.add_yaxis("2016", y_data6)
.add_yaxis("2017", y_data7)
.add_yaxis("2018", y_data8)
.add_yaxis("2019", y_data9)
.set_global_opts(title_opts=opts.TitleOpts(title="月票房走势"),
legend_opts=opts.LegendOpts(
type_="scroll", pos_top="55%", pos_left="95%", orient="vertical"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True), boundary_gap=False, ),)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False), # 不显示柱体上的标注(数值)
markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="max", name="最大值"), ]), )
.extend_axis(yaxis=opts.AxisOpts(name="票房(亿元)", position='left'), # 设置y轴标签显示格式,数据+"人"
xaxis=opts.AxisOpts(name="月份"))
) return c line_base().render("v1.html")

有本图可以看出:

1、近10年票房总数逐渐增长(当然这是废话)

2、11-13年每月票房波动很小,几乎没有明显的高峰档期,最近两年高峰档期最为明显,集中在春节、暑期和十一。

图2 年票房总值、上映影片总数及观影人次

第二张图,我们要看一下票房、上映影片数和观影人次 逐年的变化情况

数据抽取:

先筛选releaseInfo 为正常上映和首映的数据,

再按年份分组,也就是date字段的前4位,

  • 对当日票房字段进行sum聚合得到年度总票房;
  • 对movieId字段去重 并求得出现次数 即为上映的影片总数;
  • 场均人数 * 排片场次 是当日观影人次,再用sum求得年观影人次。

构造图像:

因为三类数据的x轴都是年份,所以可放在一张图上展示,为了观察更直观,将其中一项数据作成柱状图,另外两项做成折线图。

  • 1、先构造折线图图,将票房和影片数量添加为y轴数据,年份为x轴数据。
  • 2、因为票房和上映影片数 在做完单位换算后,值域基本相同,所以可以共用一个y轴,而观影人次则需要使用单独的y轴,

    所以要添加一个新的y轴,并分别指定这三项数据的y轴索引,即票房和上映影片数 使用默认的y轴索 引为0,而观影人次使用后添加的y轴,索引为1。
  • 3、再构造柱状图,y轴数据为观影人次,x轴数据依然为年份,并指定y轴索引为1
  • 4、最后,将柱状图和折线图重叠输出,再简单调整一下图像位置即可。
config = {...}    # db配置省略
conn = pymysql.connect(**config)
cursor = conn.cursor()
sql2 = '''select substr(date,1,4),
round(sum(boxInfo)/10000,2),
count(DISTINCT movieId),
round(sum(avgShowView*showInfo)/100000000,2)
from movies_data
where (substr(`releaseInfo`,1,2) = '上映' or `releaseInfo`='点映' )
GROUP by substr(date,1,4)'''
cursor.execute(sql2)
data2 = cursor.fetchall()
x_data2 = [i[0] for i in data2]
y_data2_1 = [i[1] for i in data2]
y_data2_2 = [i[2] for i in data2]
y_data2_3 = [i[3] for i in data2]
cursor.close()
conn.close() def bar_base() -> Line:
c = (
Line()
.add_xaxis(x_data2)
.add_yaxis("总票房", y_data2_1, yaxis_index=0)
.add_yaxis("上映电影总数", y_data2_2, color='LimeGreen', yaxis_index=0, )
.set_global_opts(title_opts=opts.TitleOpts(title="年票房总值、上映影片总数及观影总人次"),
legend_opts=opts.LegendOpts(pos_left="40%"),
)
.extend_axis(
yaxis=opts.AxisOpts(name="票房/数量(亿元/部)", position='left'))
.extend_axis(
yaxis=opts.AxisOpts(name="人次(亿)", type_="value", position="right", # 设置y轴的名称,类型,位置
axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="#483D8B")), ))
) bar = (
Bar()
.add_xaxis(x_data2)
.add_yaxis("观影人次", y_data2_3, yaxis_index=2, category_gap="1%",
label_opts=opts.LabelOpts(position="inside")) ) c.overlap(bar)
return Grid().add(c, opts.GridOpts(pos_left="10%",pos_top='20%'), is_control_axis_index=True) # 调整位置 bar_base().render("v2.html")

本图可以看出:

(2019年数据下滑是因为统计时 2019年刚到10月下旬,还没有得到一年完整的数据。)

1、上映影片数增长幅度不大,票房和观影人次涨幅相近,因此票房逐年增长的最主要原因是观影人次的增长,年平均票价应该变化不大。

图3 单片总票房及日均票房

影片的上映期长短不一,这也影响了影片的票房情况,所以这张图我们要看一下单片总票房和日均票房的情况。

config = {...}    # db配置省略
conn = pymysql.connect(**config) cursor = conn.cursor()
sql2 = '''select a.*,b.releasemonth from
(select movieid,
moviename,
round(sum(boxinfo)/10000,2) sumBox,
count(movieid) releasedays,
round(sum(boxinfo)/count(movieid)/10000,2) avgdaybox
from movies_data
where (substr(`releaseInfo`,1,2) = '上映' or `releaseInfo`='点映' )
group by movieid,moviename) a ,
(select substr(date,5,2) releasemonth,movieId,movieName,releaseInfo from movies_data where releaseInfo='上映首日') b
where a.movieid = b.movieid order by sumBox desc'''
cursor.execute(sql2)
data3 = cursor.fetchall()
x_data3 = [i[1] for i in data3[:30]] # 名称
y_data3_1 = [i[2] for i in data3[:30]] # 总票房
y_data3_2 = [i[4] for i in data3[:30]] # 日均票房
y_data3_3 = [int(i[5]) for i in data3[:30]] # 上映月份
cursor.close()
conn.close() def bar_base() -> Line:
c = (
Bar(init_opts=opts.InitOpts(height="600px", width="1500px"))
.add_xaxis(x_data3)
.add_yaxis("影片总票房", y_data3_1, yaxis_index=0)
# .add_yaxis("影片日均票房", y_data3_2, yaxis_index=1, gap='-40%')
.set_global_opts(title_opts=opts.TitleOpts(title="单片总票房及日均票房"),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-45)),
datazoom_opts=opts.DataZoomOpts(), )
.set_series_opts(label_opts=opts.LabelOpts(is_show=False), # 不显示柱体上的标注(数值)
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"), ]),)
.extend_axis(
yaxis=opts.AxisOpts(name="亿元", position='left'))
.extend_axis(
yaxis=opts.AxisOpts(name="亿元", type_="value", position="right", # 设置y轴的名称,类型,位置
axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="#483D8B")), ))
) bar = (
Bar(init_opts=opts.InitOpts(height="600px", width="1500px"))
.add_xaxis(x_data3)
# .add_yaxis("影片总票房", y_data3_1, yaxis_index=0)
.add_yaxis("影片日均票房", y_data3_2, yaxis_index=2, gap='-40%')
.set_global_opts(title_opts=opts.TitleOpts(title="单片总票房及日均票房"),)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False), # 不显示柱体上的标注(数值)
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"), ]),
markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="average", name="平均值"), ]
),) ) c.overlap(bar)
return Grid().add(c, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True) # 调整位置 bar_base().render("v3.html")

可以看出有的电影虽然总票房一般,但是日均票房很高,说明上映时间不长但却很火爆。

而对于总票房很高,但日均票房一般的影片,可能是由于上映时间较长,后期较低的上座率拉低了日均票房。

所以看一个影片的火爆程度,总票房只是一方面,在相同上映时间内的上座率变化趋势也很重要。

图4 单片票房及上映月份关系图

本图相当于图一的补充,主要是看一下高票房的影片和上映时间的关系


def dayformat(i):
mm = int(i[-2])
dd = int(i[-1])
mmdd = mm + dd/100*3.3
return mmdd config = {...} # db配置省略
conn = pymysql.connect(**config) cursor = conn.cursor()
sql2 = '''select a.*,b.releaseyear,b.releasemonth,b.releaseday from
(select movieid,
moviename,
round(sum(boxinfo)/10000,2) sumBox,
count(movieid) releasedays,
round(sum(boxinfo)/count(movieid)/10000,2) avgdaybox
from movies_data
where (substr(`releaseInfo`,1,2) = '上映' or `releaseInfo`='点映' )
group by movieid,moviename) a ,
(select substr(date,1,4) releaseyear,
substr(date,5,2) releasemonth,
substr(date,7,2) releaseday,
movieId,
movieName,
releaseInfo
from movies_data where releaseInfo='上映首日') b
where a.movieid = b.movieid order by sumBox desc''' cursor.execute(sql2)
data4 = cursor.fetchall() x_data4 = [i for i in range(1, 13)]
y_data4_1 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2011']
y_data4_2 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2012']
y_data4_3 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2013']
y_data4_4 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2014']
y_data4_5 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2015']
y_data4_6 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2016']
y_data4_7 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2017']
y_data4_8 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2018']
y_data4_9 = [(dayformat(i), i[2]) for i in data4 if i[-3] == '2019']
cursor.close()
conn.close() my_config = pygal.Config() # 创建Config实例
my_config.show_y_guides = False # 隐藏水平虚线
my_config.show_x_guides = True
xy_chart = pygal.XY(stroke=False, config=my_config)
xy_chart.title = '单片票房及上映月份关系图' xy_chart.add('2011', y_data4_1)
xy_chart.add('2012', y_data4_2)
xy_chart.add('2013', y_data4_3)
xy_chart.add('2014', y_data4_4)
xy_chart.add('2015', y_data4_5)
xy_chart.add('2016', y_data4_6)
xy_chart.add('2017', y_data4_7)
xy_chart.add('2018', y_data4_8)
xy_chart.add('2019', y_data4_9) xy_chart.render_to_file("v4.svg")

上一部分《【python数据分析实战】电影票房数据分析(一)数据采集》

【python数据分析实战】电影票房数据分析(二)数据可视化的更多相关文章

  1. Python数据分析实战:使用pyecharts进行数据可视化

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:刘早起 开始使用 基本套路就是先创建一个你需要的空图层,然后使用.s ...

  2. 【python数据分析实战】电影票房数据分析(一)数据采集

    目录 1.获取url 2.开始采集 3.存入mysql 本文是爬虫及可视化的练习项目,目标是爬取猫眼票房的全部数据并做可视化分析. 1.获取url 我们先打开猫眼票房http://piaofang.m ...

  3. python实现的电影票房数据可视化

    代码地址如下:http://www.demodashi.com/demo/14275.html 详细说明: Tushare是一个免费.开源的python财经数据接口包.主要实现对股票等金融数据从数据采 ...

  4. python pandas 豆瓣电影 top250 数据分析

    豆瓣电影top250数据分析 数据来源(豆瓣电影top250) 爬虫代码比较简单 数据较为真实,可以进行初步的数据分析 可以将前面的几篇文章中的介绍的数据预处理的方法进行实践 最后用matplotli ...

  5. Spark实战电影点评系统(二)

    二.通过DataFrame实战电影点评系统 DataFrameAPI是从Spark 1.3开始就有的,它是一种以RDD为基础的分布式无类型数据集,它的出现大幅度降低了普通Spark用户的学习门槛. D ...

  6. 详解Python Streamlit框架,用于构建精美数据可视化web app,练习做个垃圾分类app

    今天详解一个 Python 库 Streamlit,它可以为机器学习和数据分析构建 web app.它的优势是入门容易.纯 Python 编码.开发效率高.UI精美. 上图是用 Streamlit 构 ...

  7. python爬虫: 豆瓣电影top250数据分析

    转载博客 https://segmentfault.com/a/1190000005920679 根据自己的环境修改并配置mysql数据库 系统:Mac OS X 10.11 python 2.7 m ...

  8. [读书笔记] Python 数据分析 (八)画图和数据可视化

    ipython3 --pyplot pyplot: matplotlib 画图的交互使用环境

  9. SPSSAU数据分析思维培养系列4:数据可视化篇

    本文章为SPSSAU数据分析思维培养的第4期文章. 前3期内容分别讲述数据思维,分析方法和分析思路.本文讲述如何快速使用SPSSAU进行高质量作图,以及如何选择使用正确的图形. 本文分别从五个角度进行 ...

随机推荐

  1. Java连载33-对象的创建和使用、内存分析

    一.创建一个学生类 每个学生都有学号信息,但是每一个学生的学号都是不同的,所以要访问这个学号必须先创建对象,通过对象去访问学号信息,学号信息不能直接通过“类”去访问,所以这种成员变量又被称为“实例变量 ...

  2. 洛谷 P3868 [TJOI2009]猜数字

    题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...

  3. JAVA自学笔记 - 从零开始

    文中记录的内容都是博主从自己的学习笔记中总结的. 如果遇到问题,或者有不一样的看法,欢迎提出! 1安装JDK 从Oracle官网下载JDK,我使用的版本是1.7.0.80. 操作系统是win7 64位 ...

  4. 指尖前端重构(React)技术调研分析

    摘要:重构前的技术文档调研与分析,包括技术选型为什么选择react,应用过程中的注意事项等. 一.为什么选择React React是当前前端应用最广泛的框架.三大SPA框架 Angular.React ...

  5. 【linux】【FastDFS】FastDFS数据迁移

    后来同步的时候发现有的没有同步过来,应该是没有同步完成我就停止服务了. 最后尝试直接把fastdfs storage的data文件迁移过去即可. 1.在新的storage server服务器上停止所有 ...

  6. Go微服务容错与韧性(Service Resilience)

    Service Resilience是指当服务的的运行环境出现了问题,例如网络故障或服务过载或某些微服务宕机的情况下,程序仍能够提供部分或大部分服务,这时我们就说服务的韧性很强.它是微服务中很重要的一 ...

  7. LoadRuuner资源监控

    用ipconfig命令查看IP地址的具体方法.初级工程师面试常面临的问题:网址:http://url.cn/5BaDWvB本机IP:172.0.0.1localhostipconfig命令c查看本机I ...

  8. 基于docker构建测试环境

    目录 0x01介绍 0x02 镜像基本操作 0x03 容器基本操作 0x04 容器的修改与保存 0x05 使用Dockerfile定制镜像 0x01介绍 Docker 是一个开源的应用容器引擎,基于 ...

  9. 【ASP.NET 基础】WCF入门教程一(什么是WCF)?

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

  10. SSM相关知识

    1.SpringMVC的工作流程? 1. 用户发送请求至前端控制器DispatcherServlet 2. DispatcherServlet收到请求调用HandlerMapping处理器映射器. 3 ...