[返回模拟退火略解]

题目描述

今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\sum_{i\in X}{a_i}-\sum_{i\in Y}{a_i}|∣i∈X∑​ai​−i∈Y∑​ai​∣的值最小。

Solution 3878\text{Solution 3878}Solution 3878 解法一

模拟退火SA。

尝试重新排列 aaa,将 aaa 的前半部分分成一堆,后半部分分成一堆,求出解。

贴上 BriMon dalao的代码。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
#define reg register
inline int read() {
int res = 0;char ch=getchar();bool fu=0;
while(!isdigit(ch)) {if(ch=='-')fu=1;ch=getchar();}
while(isdigit(ch)) res=(res<<3)+(res<<1)+(ch^48), ch=getchar();
return fu?-res:res;
} int T, n;
int a[35];
int ans; inline int Calc()
{
int res1 = 0, res2 = 0;
for (reg int i = 1 ; i <= n ; i ++)
if (i <= (n + 1) / 2) res1 += a[i];
else res2 += a[i];
return abs(res1 - res2);
} inline void SA()
{
double T = 2333.0;
while(T > 1e-9)
{
int x = rand() % ((n + 1) / 2) + 1, y = rand() % ((n + 1) / 2) + ((n + 1) / 2);
if (x <= 0 or x > n or y <= 0 or y > n) continue;
swap(a[x], a[y]);
int newans = Calc();
int dert = ans - newans;
if (dert > 0) ans = newans;
else if (exp((double)((double)dert/T)) * RAND_MAX <= rand()) swap(a[x], a[y]);
T *= 0.998;
}
} int main()
{
T = read();
srand((unsigned)time(NULL));
while(T--)
{
n = read();
for (reg int i = 1 ; i <= n ; i ++) a[i] = read();
ans = 1e9;
for (int i = 1 ; i <= 50 ; i ++) SA();
cout << ans << endl;
}
return 0;
}

Solution 3878\text{Solution 3878}Solution 3878 解法二

尝试 dfs 剪枝。

每个金币有取和不取 222 种状态,最多 303030 个金币,深搜需 2302^{30}230 的时间。然而可以优化。

按价值从大到小排序,你一不小心取的价值太大会被剪枝。

最多取 n2\frac{n}{2}2n​ 个金币,你取得太多是要被剪枝的。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm> #define reg register typedef long long ll;
int T,n;
ll a[40],s,ans;
bool b[40];
int hh[40]; int cmp(int a,int b){
return a>b;
}
ll h(int x,int y){
return hh[y]-hh[x-1];
}
ll dfs(int c,int x,ll X,int y,ll Y)
{
if(x>n/2||y>n/2) return ans;
ll nx=X+h(c,c+(n/2-x)-1);
if(nx<=s-nx) return(s-nx-nx);
nx=X+h(n-(n/2-x)+1,n);
if(nx>=s-nx) return(nx-(s-nx));
ll p=dfs(c+1,x+1,X+a[c],y,Y);
ll q=dfs(c+1,x,X,y+1,Y+a[c]);
if(p<q) return p;
return q;
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
s=0;ans=1e17;
for(reg int i=1;i<=n;++i){
scanf("%lld",&a[i]);
s+=a[i];
}
if(n%2){
++n;
a[n]=0;
}
std::sort(a+1,a+n+1,cmp);
for(reg int i=1;i<=n;++i)
hh[i]=hh[i-1]+a[i];
printf("%lld\n",dfs(1,0,0,0,0));
}
}

luogu P3878 [TJOI2010]分金币的更多相关文章

  1. [洛谷P3878][TJOI2010]分金币

    题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少 题解:模拟退火 卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$ ...

  2. [luogu3878][TJOI2010]分金币【模拟退火】

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...

  3. [TJOI2010]分金币

    嘟嘟嘟 看数据范围,就能想到折半搜索. 但怎么搜,必须得想清楚了. 假设金币总数为1000,有20个人,首先搜前10个人,把答案记下来.然后如果在后十个人中搜到了4个人,价值为120,那么我们应该在记 ...

  4. [Luogu3878] [TJOI2010]分金币

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 输入输出格式 输入格式: 每个输入文件中包含多 ...

  5. Luogu-3878 [TJOI2010]分金币

    这题和在我长郡考试时的一道题思路差不多...考虑折半搜索,预处理左半边选的方案所产生的数量差值\(x\)以及价值差值\(y\),把\(y\)扔到下标为\(x\)的set里面,然后在搜索右半边,每搜出一 ...

  6. 分金币 bzoj 3293

    分金币(1s 128M)  coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...

  7. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

  8. 【贪心+中位数】【UVa 11300】 分金币

    (解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...

  9. 【BZOJ3293】分金币(贪心)

    [BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...

随机推荐

  1. Nancy获取Request.Form的所有参数

    Nancy是一个轻量级的webapi框架,在用Nancy框架的时候,我们经常要获取到接口的所有动态参数值, 但是Nancy的Request.Form不能够直接转成NameValueCollection ...

  2. ES6新增常见特性

    一:声明属性let const var let const 区别 1.var声明变量会发生变量提升,let.const不会发生变量提升 2.var允许重复声明变量,let不可以 3.const声明变量 ...

  3. DirectX12 3D 游戏开发与实战第四章内容(下)

    Direct3D的初始化(下) 学习目标 了解Direct3D在3D编程中相对于硬件所扮演的角色 理解组件对象模型COM在Direct3D中的作用 掌握基础的图像学概念,例如2D图像的存储方式,页面翻 ...

  4. DirectX12 3D 游戏开发与实战第四章内容(上)

    Direct3D的初始化(上) 学习目标 了解Direct3D在3D编程中相对于硬件所扮演的角色 理解组件对象模型COM在Direct3D中的作用 掌握基础的图像学概念,例如2D图像的存储方式,页面翻 ...

  5. charles 端口转发

    本文参考:charles 端口转发 端口转发 端口转发(Port forwarding),有时被叫做隧道,是安全壳(SSH) 为网络安全通信使用的一种方法.端口转发是转发一个网络端口从一个网络节点到另 ...

  6. 【深入学习MySQL】MySQL的索引为什么使用B+树?

    前言 在MySQL中,无论是Innodb还是MyIsam,都使用了B+树作索引结构(这里不考虑hash等其他索引).本文将从最普通的二叉查找树开始,逐步说明各种树解决的问题以及面临的新问题,从而说明M ...

  7. Vue学习之vue属性绑定和双向数据绑定

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. MySQL中常用到的关于时间的SQL

    -- 今天 SELECT DATE_FORMAT(NOW(),'%Y-%m-%d 00:00:00') AS dayStart;SELECT DATE_FORMAT(NOW(),'%Y-%m-%d 2 ...

  9. jquery让form表单异步提交

    1.监听表单提交事件,并阻止表单提交 $("form").submit(function(e) { return false;//阻止表单提交 }) 2.拿到表单内容 let da ...

  10. 使用 Fabric 自动化部署 Django 项目

    作者:HelloGitHub-追梦人物 文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 在上一篇教程中,我们通过手工方式将代码部署到了服务器.整个过程涉及到十几条命令,输了 ...