TensorFlow笔记-可视化Tensorboard
可视化Tensorboard
•数据序列化-events文件
TensorBoard 通过读取 TensorFlow 的事件文件来运行
•tf.summary.FileWriter('/tmp/tensorflow/summary/test/',graph=
default_graph)
返回filewriter,写入事件文件到指定目录(最好用绝对路径),以提供给tensorboard使用
•开启
tensorboard --logdir=/tmp/tensorflow/summary/test/
一般浏览器打开为127.0.0.1:6006 或者 localhost:6006
注:修改程序后,再保存一遍会有新的事件文件,打开默认为最新
import tensorflow as tf
import os
# 防止警告
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.add(input1,input2)
with tf.Session() as sess:
print(sess.run([output],feed_dict={input1:10.0,input2:20.0}))
summary_writer = tf.summary.FileWriter('./tmp/summary/test/', graph=sess.graph)
Scalar merge
目的:观察模型的参数、损失值等变量值的变化
1、收集变量
•tf.summary.scalar(name=’’,tensor)收集对于损失函数和准确率等单值变量,name为变量的名字,tensor为值
•tf.summary.histogram(name=‘’,tensor)收集高维度的变量参数
•tf.summary.image(name=‘’,tensor) 收集输入的图片张量能显示图片
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_label, logits=y))
# 梯度下降
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 比较真实标签
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_label, 1))
# tf.cast(xx,tf.float32)改变tensor类型
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar("loss",cross_entropy) tf.summary.scalar("accuracy", accuracy) tf.summary.histogram("W",W)
2、合并变量写入事件文件
•merged= tf.summary.merge_all()
•运行合并:summary= sess.run(merged),每次迭代都需运行
•添加:FileWriter.add_summary(summary,i),i表示第几次的值
merged = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.summary_dir, graph=sess.graph)
summary = sess.run(merged)
summary_writer.add_summary(summary,i)
来个复杂一点的:
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' graph = tf.Graph()
with graph.as_default():
with tf.name_scope("name1") as scope:
a = tf.Variable([1.0,2.0],name="a")
with tf.name_scope("name2") as scope:
b = tf.Variable(tf.zeros([20]),name="b")
c = tf.Variable(tf.ones([20]),name="c")
with tf.name_scope("name3") as scope:
a1 = tf.Variable(tf.constant(21.0), name="a1")
b1 = tf.Variable(tf.constant(13.0), name="b1")
with tf.name_scope("cal") as scope:
d = tf.concat([b,c],0)
e = tf.add(a,57)
c1 = tf.add(a1, b1) with tf.Session(graph=graph) as sess:
tf.global_variables_initializer().run()
# merged = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter('./tmp/summary/test/', graph=sess.graph)
# print(sess.run([d, e, c1]))
TensorFlow笔记-可视化Tensorboard的更多相关文章
- tensorflow笔记(三)之 tensorboard的使用
tensorflow笔记(三)之 tensorboard的使用 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7429344.h ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- Tensorflow 笔记 -- tensorboard 的使用
Tensorflow 笔记 -- tensorboard 的使用 TensorFlow提供非常方便的可视化命令Tensorboard,先上代码 import tensorflow as tf a = ...
- tensorflow笔记(一)之基础知识
tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇no ...
- tensorflow笔记(二)之构造一个简单的神经网络
tensorflow笔记(二)之构造一个简单的神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7425200.html ...
- 学习笔记TF039:TensorBoard
首先向大家和<TensorFlow实战>的作者说句不好意思.我现在看的书是<TensorFlow实战>.但从TF024开始,我在学习笔记的参考资料里一直写的是<Tenso ...
- tensorflow笔记:使用tf来实现word2vec
(一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔 ...
- tensorflow笔记:多层LSTM代码分析
tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...
- TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点
TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣, ...
随机推荐
- Git 常用命令大全(转)
Git 是一个很强大的分布式版本控制系统.它不但适用于管理大型开源软件的源代码,管理私人的文档和源代码也有很多优势. Git常用操作命令: 1) 远程仓库相关命令 检出仓库:$ git clone g ...
- 多线程基础理论--C#
1.主线程 进程创建时,默认创建一个线程,这个线程就是主线程.主线程是产生其他子线程的线程,同时,主线程必须是最后一个结束执行的线程,它完成各种关闭其他子线程的操作.尽管主线程是程序开始时自动创建的, ...
- IIS6.0 WEB园配置
为应用程序池创建 Web 园请注意以下几点: 一.每一个工作进程都会消耗系统资源和CPU占用率:太多的工作进程会导致系统资源和CPU利用率的急剧消耗: 二.每一个工作进程都具有自己的状态数据,如果We ...
- [Err] 1146 - Table 'performance_schema.session_status' doesn't exist已解决
刚刚接触MySQL,就往数据库添加数据,就遇到这个问题 解决方案就是找到你安装MySQL的bin目录 然后在cmd输入 mysql_upgrade -u root -p --force 回车,然后输入 ...
- ansible(三)
一.setup模块(收集信息 ) 1.ansible中的setup模块可以收集到的信息 ansible web -m setup ansible_all_ipv4_addresses # ipv4的所 ...
- 在前后端分离项目中使用SpringBoot集成Shiro
前言 这次在处理一个小项目时用到了前后端分离,服务端使用springboot2.x.权限验证使用了Shiro.前后端分离首先需要解决的是跨域问题,POST接口跨域时会预发送一个OPTIONS请求,浏览 ...
- PHP实现WebService服务
第一步,安装PHP扩展SOAP并开启扩展,是否开启成功以phpinfo为准. 第二步,创建服务端文件server.php <?php Class server { public function ...
- Kong:Nginx支持的API Gateway管理解决方案
Kong的主要功能 Kong可灵活扩展:只要增添更多的服务器实例,它就能横向扩展,毫无问题,那样你可以支持更多流量,同时确保网络延迟很短. Kong可在任何地方运行:它可以部署在单个或多个数据中心环境 ...
- sublimetext插件安装
sublimetext 一.下载地址: https://www.sublimetext.com/ 二.安装Package Control 方式一: Ctrl + Shift + P , 输入insta ...
- __file__、__name__、__dict__方法整理
本文主要介绍__file__.__name__.__dict__三个方法的作用. #01 __file__:打印当前文件的位置. # import os # print(__file__) # 在py ...