机器学习经典算法之Apriori
一、 搞懂关联规则中的几个概念
关联规则这个概念,最早是由 Agrawal 等人在 1993 年提出的。在 1994 年 Agrawal 等人又提出了基于关联规则的 Apriori 算法,至今 Apriori 仍是关联规则挖掘的重要算法。
/*请尊重作者劳动成果,转载请标明原文链接:*/
/* https://www.cnblogs.com/jpcflyer/p/11146587.html * /
关联规则挖掘可以让我们从数据集中发现项与项(item 与 item)之间的关系,它在我们的生活中有很多应用场景,“购物篮分析”就是一个常见的场景,这个场景可以从消费者交易记录中发掘商品与商品之间的关联关系,进而通过商品捆绑销售或者相关推荐的方式带来更多的销售量。所以说,关联规则挖掘是个非常有用的技术。
我举一个超市购物的例子,下面是几名客户购买的商品列表:
什么是支持度呢?
支持度是个百分比,它指的是某个商品组合出现的次数与总次数之间的比例。支持度越高,代表这个组合出现的频率越大。
在这个例子中,我们能看到“牛奶”出现了 4 次,那么这 5 笔订单中“牛奶”的支持度就是 4/5=0.8。
同样“牛奶 + 面包”出现了 3 次,那么这 5 笔订单中“牛奶 + 面包”的支持度就是 3/5=0.6。
什么是置信度呢?
它指的就是当你购买了商品 A,会有多大的概率购买商品 B,在上面这个例子中:
置信度(牛奶→啤酒)=2/4=0.5,代表如果你购买了牛奶,有多大的概率会购买啤酒?
置信度(啤酒→牛奶)=2/3=0.67,代表如果你购买了啤酒,有多大的概率会购买牛奶?
我们能看到,在 4 次购买了牛奶的情况下,有 2 次购买了啤酒,所以置信度 (牛奶→啤酒)=0.5,而在 3 次购买啤酒的情况下,有 2 次购买了牛奶,所以置信度(啤酒→牛奶)=0.67。
所以说置信度是个条件概念,就是说在 A 发生的情况下,B 发生的概率是多少。
什么是提升度呢?
我们在做商品推荐的时候,重点考虑的是提升度,因为提升度代表的是“商品 A 的出现,对商品 B 的出现概率提升的”程度。
还是看上面的例子,如果我们单纯看置信度 (可乐→尿布)=1,也就是说可乐出现的时候,用户都会购买尿布,那么当用户购买可乐的时候,我们就需要推荐尿布么?
实际上,就算用户不购买可乐,也会直接购买尿布的,所以用户是否购买可乐,对尿布的提升作用并不大。我们可以用下面的公式来计算商品 A 对商品 B 的提升度:
提升度 (A→B)= 置信度 (A→B)/ 支持度 (B)
这个公式是用来衡量 A 出现的情况下,是否会对 B 出现的概率有所提升。
所以提升度有三种可能:
提升度 (A→B)>1:代表有提升;
提升度 (A→B)=1:代表有没有提升,也没有下降;
提升度 (A→B)<1:代表有下降。
二、 Apriori 的工作原理
明白了关联规则中支持度、置信度和提升度这几个重要概念,我们来看下 Apriori 算法是如何工作的。
首先我们把上面案例中的商品用 ID 来代表,牛奶、面包、尿布、可乐、啤酒、鸡蛋的商品 ID 分别设置为 1-6,上面的数据表可以变为:
Apriori 算法其实就是查找频繁项集 (frequent itemset) 的过程,所以首先我们需要定义什么是频繁项集。
频繁项集就是支持度大于等于最小支持度 (Min Support) 阈值的项集,所以小于最小值支持度的项目就是非频繁项集,而大于等于最小支持度的项集就是频繁项集。
项集这个概念,英文叫做 itemset,它可以是单个的商品,也可以是商品的组合。我们再来看下这个例子,假设我随机指定最小支持度是 50%,也就是 0.5。
我们来看下 Apriori 算法是如何运算的。
首先,我们先计算单个商品的支持度,也就是得到 K=1 项的支持度:
因为最小支持度是 0.5,所以你能看到商品 4、6 是不符合最小支持度的,不属于频繁项集,于是经过筛选商品的频繁项集就变成:
在这个基础上,我们将商品两两组合,得到 k=2 项的支持度:
我们再筛掉小于最小值支持度的商品组合,可以得到:
我们再将商品进行 K=3 项的商品组合,可以得到:
再筛掉小于最小值支持度的商品组合,可以得到:
到这里,你已经和我模拟了一遍整个 Apriori 算法的流程,下面我来给你总结下 Apriori 算法的递归流程:
K=1,计算 K 项集的支持度;
筛选掉小于最小支持度的项集;
如果项集为空,则对应 K-1 项集的结果为最终结果。
否则 K=K+1,重复 1-3 步。
三、 Apriori 的改进算法:FP-Growth 算法
能看到 Apriori 在计算的过程中有以下几个缺点:
可能产生大量的候选集。因为采用排列组合的方式,把可能的项集都组合出来了;
每次计算都需要重新扫描数据集,来计算每个项集的支持度。
所以 Apriori 算法会浪费很多计算空间和计算时间,为此人们提出了 FP-Growth 算法,它的特点是:
创建了一棵 FP 树来存储频繁项集。在创建前对不满足最小支持度的项进行删除,减少了存储空间。我稍后会讲解如何构造一棵 FP 树;
整个生成过程只遍历数据集 2 次,大大减少了计算量。
所以在实际工作中,我们常用 FP-Growth 来做频繁项集的挖掘,下面我给你简述下 FP-Growth 的原理。
1. 创建项头表(item header table)
创建项头表的作用是为 FP 构建及频繁项集挖掘提供索引。
这一步的流程是先扫描一遍数据集,对于满足最小支持度的单个项(K=1 项集)按照支持度从高到低进行排序,这个过程中删除了不满足最小支持度的项。
项头表包括了项目、支持度,以及该项在 FP 树中的链表。初始的时候链表为空。
2. 构造 FP 树
FP 树的根节点记为 NULL 节点。
整个流程是需要再次扫描数据集,对于每一条数据,按照支持度从高到低的顺序进行创建节点(也就是第一步中项头表中的排序结果),节点如果存在就将计数 count+1,如果不存在就进行创建。同时在创建的过程中,需要更新项头表的链表。
3. 通过 FP 树挖掘频繁项集
到这里,我们就得到了一个存储频繁项集的 FP 树,以及一个项头表。我们可以通过项头表来挖掘出每个频繁项集。
具体的操作会用到一个概念,叫“条件模式基”,它指的是以要挖掘的节点为叶子节点,自底向上求出 FP 子树,然后将 FP 子树的祖先节点设置为叶子节点之和。
我以“啤酒”的节点为例,从 FP 树中可以得到一棵 FP 子树,将祖先节点的支持度记为叶子节点之和,得到:
你能看出来,相比于原来的 FP 树,尿布和牛奶的频繁项集数减少了。这是因为我们求得的是以“啤酒”为节点的 FP 子树,也就是说,在频繁项集中一定要含有“啤酒”这个项。你可以再看下原始的数据,其中订单 1{牛奶、面包、尿布}和订单 5{牛奶、面包、尿布、可乐}并不存在“啤酒”这个项,所以针对订单 1,尿布→牛奶→面包这个项集就会从 FP 树中去掉,针对订单 5 也包括了尿布→牛奶→面包这个项集也会从 FP 树中去掉,所以你能看到以“啤酒”为节点的 FP 子树,尿布、牛奶、面包项集上的计数比原来少了 2。
条件模式基不包括“啤酒”节点,而且祖先节点如果小于最小支持度就会被剪枝,所以“啤酒”的条件模式基为空。
同理,我们可以求得“面包”的条件模式基为:
所以可以求得面包的频繁项集为{尿布,面包},{尿布,牛奶,面包}。同样,我们还可以求得牛奶,尿布的频繁项集,这里就不再计算展示。
四、 如何使用 Apriori 工具包
Apriori 虽然是十大算法之一,不过在 sklearn 工具包中并没有它,也没有 FP-Growth 算法。这里教你个方法,来选择 Python 中可以使用的工具包,你可以通过 https://pypi.org/ 搜索工具包。
这个网站提供的工具包都是 Python 语言的,你能找到 8 个 Python 语言的 Apriori 工具包,具体选择哪个呢?建议你使用第二个工具包,即 efficient-apriori。后面我会讲到为什么推荐这个工具包。
首先你需要通过 pip install efficient-apriori 安装这个工具包。
然后看下如何使用它,核心的代码就是这一行:
itemsets, rules = apriori(data, min_support, min_confidence)
其中 data 是我们要提供的数据集,它是一个 list 数组类型。min_support 参数为最小支持度,在 efficient-apriori 工具包中用 0 到 1 的数值代表百分比,比如 0.5 代表最小支持度为 50%。min_confidence 是最小置信度,数值也代表百分比,比如 1 代表 100%。
接下来我们用这个工具包,跑一下前面讲到的超市购物的例子。下面是客户购买的商品列表:
具体实现的代码如下:
from efficient_apriori import apriori
# 设置数据集
data = [('牛奶','面包','尿布'),
('可乐','面包', '尿布', '啤酒'),
('牛奶','尿布', '啤酒', '鸡蛋'),
('面包', '牛奶', '尿布', '啤酒'),
('面包', '牛奶', '尿布', '可乐')]
# 挖掘频繁项集和频繁规则
itemsets, rules = apriori(data, min_support=0.5, min_confidence=1)
print(itemsets)
print(rules)
运行结果:
{1: {('啤酒',): 3, ('尿布',): 5, ('牛奶',): 4, ('面包',): 4}, 2: {('啤酒', '尿布'): 3, ('尿布', '牛奶'): 4, ('尿布', '面包'): 4, ('牛奶', '面包'): 3}, 3: {('尿布', '牛奶', '面包'): 3}}
[{啤酒} -> {尿布}, {牛奶} -> {尿布}, {面包} -> {尿布}, {牛奶, 面包} -> {尿布}]
你能从代码中看出来,data 是个 List 数组类型,其中每个值都可以是一个集合。实际上你也可以把 data 数组中的每个值设置为 List 数组类型,比如:
data = [['牛奶','面包','尿布'],
['可乐','面包', '尿布', '啤酒'],
['牛奶','尿布', '啤酒', '鸡蛋'],
['面包', '牛奶', '尿布', '啤酒'],
['面包', '牛奶', '尿布', '可乐']]
两者的运行结果是一样的,efficient-apriori 工具包把每一条数据集里的项式都放到了一个集合中进行运算,并没有考虑它们之间的先后顺序。因为实际情况下,同一个购物篮中的物品也不需要考虑购买的先后顺序。
而其他的 Apriori 算法可能会因为考虑了先后顺序,出现计算频繁项集结果不对的情况。所以这里采用的是 efficient-apriori 这个工具包。
五、 挖掘导演是如何选择演员的
在实际工作中,数据集是需要自己来准备的,比如我们要挖掘导演是如何选择演员的数据情况,但是并没有公开的数据集可以直接使用。因此我们需要使用之前讲到的 Python 爬虫进行数据采集。
不同导演选择演员的规则是不同的,因此我们需要先指定导演。数据源我们选用豆瓣电影。
先来梳理下采集的工作流程。
首先我们先在 https://movie.douban.com 搜索框中输入导演姓名,比如“宁浩”。
页面会呈现出来导演之前的所有电影,然后对页面进行观察,你能观察到以下几个现象:
页面默认是 15 条数据反馈,第一页会返回 16 条。因为第一条数据实际上这个导演的概览,你可以理解为是一条广告的插入,下面才是真正的返回结果。
每条数据的最后一行是电影的演出人员的信息,第一个人员是导演,其余为演员姓名。姓名之间用“/”分割。
有了这些观察之后,我们就可以编写抓取程序了。在代码讲解中你能看出这两点观察的作用。抓取程序的目的是为了生成宁浩导演(你也可以抓取其他导演)的数据集,结果会保存在 csv 文件中。完整的抓取代码如下:
# -*- coding: utf-8 -*-
# 下载某个导演的电影数据集
from efficient_apriori import apriori
from lxml import etree
import time
from selenium import webdriver
import csv
driver = webdriver.Chrome()
# 设置想要下载的导演 数据集
director = u'宁浩'
# 写 CSV 文件
file_name = './' + director + '.csv'
base_url = 'https://movie.douban.com/subject_search?search_text='+director+'&cat=1002&start='
out = open(file_name,'w', newline='', encoding='utf-8-sig')
csv_write = csv.writer(out, dialect='excel')
flags=[]
# 下载指定页面的数据
def download(request_url):
driver.get(request_url)
time.sleep(1)
html = driver.find_element_by_xpath("//*").get_attribute("outerHTML")
html = etree.HTML(html)
# 设置电影名称,导演演员 的 XPATH
movie_lists = html.xpath("/html/body/div[@id='wrapper']/div[@id='root']/div[1]//div[@class='item-root']/div[@class='detail']/div[@class='title']/a[@class='title-text']")
name_lists = html.xpath("/html/body/div[@id='wrapper']/div[@id='root']/div[1]//div[@class='item-root']/div[@class='detail']/div[@class='meta abstract_2']")
# 获取返回的数据个数
num = len(movie_lists)
if num > 15: # 第一页会有 16 条数据
# 默认第一个不是,所以需要去掉
movie_lists = movie_lists[1:]
name_lists = name_lists[1:]
for (movie, name_list) in zip(movie_lists, name_lists):
# 会存在数据为空的情况
if name_list.text is None:
continue
# 显示下演员名称
print(name_list.text)
names = name_list.text.split('/')
# 判断导演是否为指定的 director
if names[0].strip() == director and movie.text not in flags:
# 将第一个字段设置为电影名称
names[0] = movie.text
flags.append(movie.text)
csv_write.writerow(names)
print('OK') # 代表这页数据下载成功
print(num)
if num >= 14: # 有可能一页会有 14 个电影
# 继续下一页
return True
else:
# 没有下一页
return False # 开始的 ID 为 0,每页增加 15
start = 0
while start<10000: # 最多抽取 1 万部电影
request_url = base_url + str(start)
# 下载数据,并返回是否有下一页
flag = download(request_url)
if flag:
start = start + 15
else:
break
out.close()
print('finished')
代码中涉及到了几个模块,我简单讲解下这几个模块。
在引用包这一段,我们使用 csv 工具包读写 CSV 文件,用 efficient_apriori 完成 Apriori 算法,用 lxml 进行 XPath 解析,time 工具包可以让我们在模拟后有个适当停留,代码中我设置为 1 秒钟,等 HTML 数据完全返回后再进行 HTML 内容的获取。使用 selenium 的 webdriver 来模拟浏览器的行为。
在读写文件这一块,我们需要事先告诉 python 的 open 函数,文件的编码是 utf-8-sig(对应代码:encoding=‘utf-8-sig’),这是因为我们会用到中文,为了避免编码混乱。
编写 download 函数,参数传入我们要采集的页面地址(request_url)。针对返回的 HTML,我们需要用到之前讲到的 Chrome 浏览器的 XPath Helper 工具,来获取电影名称以及演出人员的 XPath。我用页面返回的数据个数来判断当前所处的页面序号。如果数据个数 >15,也就是第一页,第一页的第一条数据是广告,我们需要忽略。如果数据个数 =15,代表是中间页,需要点击“下一页”,也就是翻页。如果数据个数 <15,代表最后一页,没有下一页。
在程序主体部分,我们设置 start 代表抓取的 ID,从 0 开始最多抓取 1 万部电影的数据(一个导演不会超过 1 万部电影),每次翻页 start 自动增加 15,直到 flag=False 为止,也就是不存在下一页的情况。
你可以模拟下抓取的流程,获得指定导演的数据,比如我上面抓取的宁浩的数据。这里需要注意的是,豆瓣的电影数据可能是不全的,但基本上够我们用。
有了数据之后,我们就可以用 Apriori 算法来挖掘频繁项集和关联规则,代码如下:
# -*- coding: utf-8 -*-
from efficient_apriori import apriori
import csv
director = u'宁浩'
file_name = './'+director+'.csv'
lists = csv.reader(open(file_name, 'r', encoding='utf-8-sig'))
# 数据加载
data = []
for names in lists:
name_new = []
for name in names:
# 去掉演员数据中的空格
name_new.append(name.strip())
data.append(name_new[1:])
# 挖掘频繁项集和关联规则
itemsets, rules = apriori(data, min_support=0.5, min_confidence=1)
print(itemsets)
print(rules)
代码中使用的 apriori 方法和开头中用 Apriori 获取购物篮规律的方法类似,比如代码中都设定了最小支持度和最小置信系数,这样我们可以找到支持度大于 50%,置信系数为 1 的频繁项集和关联规则。
这是最后的运行结果:
{1: {('徐峥',): 5, ('黄渤',): 6}, 2: {('徐峥', '黄渤'): 5}}
[{徐峥} -> {黄渤}]
你能看出来,宁浩导演喜欢用徐峥和黄渤,并且有徐峥的情况下,一般都会用黄渤。你也可以用上面的代码来挖掘下其他导演选择演员的规律。
机器学习经典算法之Apriori的更多相关文章
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- Python3入门机器学习经典算法与应用
<Python3入门机器学习经典算法与应用> 章节第1章 欢迎来到 Python3 玩转机器学习1-1 什么是机器学习1-2 课程涵盖的内容和理念1-3 课程所使用的主要技术栈第2章 机器 ...
- Python3实现机器学习经典算法(三)ID3决策树
一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小 ...
- Python3实现机器学习经典算法(二)KNN实现简单OCR
一.前言 1.ocr概述 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然 ...
- Python3实现机器学习经典算法(一)KNN
一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常 ...
- Python3实现机器学习经典算法(四)C4.5决策树
一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Python3入门机器学习经典算法与应用☝☝☝
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与 ...
随机推荐
- ASP.NET Core 登录登出 - ASP.NET Core 基础教程 - 简单教程,简单编程
原文:ASP.NET Core 登录登出 - ASP.NET Core 基础教程 - 简单教程,简单编程 ASP.NET Core 登录登出 上一章节我们总算完善了注册的功能,而且也添加了一个用户,现 ...
- 与jQuery的感情碰撞——由浅入深学jQuery
原来的时候自己看过jQuery,但是对于什么是jQuery,除了知道jQuery是一种javascript类库外,除了会用几个网页特效外,其他的我这真的是不知道啊.眼看自己就要找工作了,所以自己需要好 ...
- VoIP应用在Ubuntu 14.04下编译FFmpeg libX264及PJSIP
PJSIP是一个开源的SIP协议栈.它支持多种SIP的扩展功能,可说算是最目前流行的SIP协议栈之一了. 它实现了SIP.SDP.RTP.STUN.TURN和ICE.PJSIP作为基于SIP的一个多 ...
- 人活着系列Tanya和蔡健雅猪 (floyd)
人活着系列之芳姐和芳姐的猪 Time Limit: 1000MS Memory limit: 65536K 题目描写叙述 芳姐特别喜欢猪,所以,她特意养了m个猪圈,顺便在k条无向边,每条边有都有起点v ...
- 潜移默化学会WPF(转载篇)--屏幕显示Label,鼠标移上去变成textBox
原文:潜移默化学会WPF(转载篇)--屏幕显示Label,鼠标移上去变成textBox <Window x:Class="WpfApplication1.Window1" x ...
- WPF Datagrid with some read-only rows - Stack Overflow
原文:WPF Datagrid with some read-only rows - Stack Overflow up vote 21 down vote accepted I had the sa ...
- 【msdn wpf forum翻译】获取当前窗口焦点所在的元素
原文:[msdn wpf forum翻译]获取当前窗口焦点所在的元素 原文地址: http://social.msdn.microsoft.com/Forums/en-US/wpf/thread/6b ...
- .NET VS 自定义新建代码文件模板
参考:http://www.cnblogs.com/fightingtong/p/3765914.html 在VS中新建文件时,可使用模板在文件中生成指定内容.只需要把IDE安装目录下的模板进行修改保 ...
- Linux杂谈: 树形显示多级目录--tree
最近写博客的时候偶尔会需要将文件目录结构直观地列出来,例如python的包结构. 于是在网上搜了搜,发现了一个Linux下还不错的工具--tree tree 可以很直观地显示多级目录结构. 1. 安装 ...
- Win10之UWP的数据存储
原文:Win10之UWP的数据存储 我们知道通常我们开发的时候都要考虑把用户的数据存储到一个数据库里面,而这个数据库则考虑到了整个应用的性能上面,这里我们不考虑SQL server的数据库,我们考虑较 ...