Content

试求出在一个 \(n\times n\) 的地图 \(M\) 中,满足 \(1\leqslant i,j\leqslant n\) 且 \(M_{i,j}=M_{i+1,j+1}=M_{i-1,j+1}=M_{i-1,j-1}=M_{i+1,j-1}=\) X 这个字符的 \((i,j)\) 的对数。

数据范围:\(1\leqslant n\leqslant 500\),字符只包含 X 或者 .

Solution

直接暴力枚举判断就好了,建议用 \(i=1\sim n,j=1\sim n\) 的方式读入,再将数组开大点,就不需要考虑越界的问题了。具体见代码。

Code

int n, ans;
char a[507][507]; int main() {
getint(n);
_for(i, 1, n) scanf("%s", a[i] + 1);
_for(i, 1, n)
_for(j, 1, n)
if(a[i][j] == 'X' && a[i + 1][j + 1] == 'X' && a[i - 1][j + 1] == 'X' && a[i - 1][j - 1] == 'X' && a[i + 1][j - 1] == 'X') ans++;
writeint(ans);
return 0;
}

CF1106A Lunar New Year and Cross Counting 题解的更多相关文章

  1. CSAcademy Prefix Suffix Counting 题解

    CSAcademy Prefix Suffix Counting 题解 目录 CSAcademy Prefix Suffix Counting 题解 题意 思路 做法 程序 题意 给你两个数字\(N\ ...

  2. [USACO17JAN]Promotion Counting 题解

    前言 巨佬说:要有线段树,结果蒟蒻打了一棵树状数组... 想想啊,奶牛都开公司当老板了,我还在这里码代码,太失败了. 话说奶牛开个公司老板不应该是FarmerJohn吗? 题解 刚看到这道题的时候竟然 ...

  3. POJ 2386 Lake Counting 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2386 <挑战程序设计竞赛>习题 题目描述Description Due to recent rains, water has ...

  4. codeforces#536题解

    CodeForces#536 A. Lunar New Year and Cross Counting Description: Lunar New Year is approaching, and ...

  5. 题解-Codeforces1106全套

    因为参加完wc后心情很差,而且在广州过年没Ubuntu,所以就没打这场比赛了,结果这套题全部1A了,现在看来真是错失良机 结果这场不计rating 今天是除夕,大家节日快乐 A. Lunar New ...

  6. 山东省第四届ACM大学生程序设计竞赛解题报告(部分)

    2013年"浪潮杯"山东省第四届ACM大学生程序设计竞赛排名:http://acm.upc.edu.cn/ranklist/ 一.第J题坑爹大水题,模拟一下就行了 J:Contes ...

  7. POJ3467(预处理)

    Cross Counting Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1331   Accepted: 375 De ...

  8. 牛客网暑期ACM多校训练营(第二场)message

    传送门:https://ac.nowcoder.com/acm/problem/16631 题意 对于直线y=ax+b,给出n个的a[i]和b[i].m次询问,每次询问给出直线y=cx+d的c[i]和 ...

  9. 【题解】Counting D-sets(容斥+欧拉定理)

    [题解]Counting D-sets(容斥+欧拉定理) 没时间写先咕咕咕. vjCodeChef - CNTDSETS 就是容斥,只是难了一二三四五\(\dots \inf\)点 题目大意: 给定你 ...

随机推荐

  1. 由于vue的for循环id并不严谨,提高id严谨性

    如果后台没有传入id,我们拿到的数据没有id修改等操作不方便,如何拿到id呢 https://github.com/dylang/shortid 提供唯一id 插件的引入和使用: <templa ...

  2. Dockerfile之CMD与Entrypoint使用要点

    CMD与ENTRYPOINT都可以代表容器的启动命令,单丛语义上来理解,CMD是一个命令或者口令,而ENTRYPOINT则是一个入口(相当于容器启动时的入口),那么其实就可以理解为每当我们开启一个容器 ...

  3. CF1036F

    考虑这种一堆数字\(gcd = k\) 有经典做法. 考虑设\(f(x)\)为\(gcd\)是\(x\)的倍数的方案数. \(g(x)\)为\(gcd\)刚好为\(x\)的方案数. 则有 \(f(x) ...

  4. P6072 『MdOI R1』Path

    考虑我们有这样操作. 我们只要维护两点在子树内和两点在子树外的异或和即可. 前者可以类似于线段树合并的trie树合并. 后者有两种做法: 一种是把dfn序翻倍:然后子树补变成了一个区间最大异或问题,可 ...

  5. Codeforces 434E - Furukawa Nagisa's Tree(三元环+点分治)

    Codeforces 题面传送门 & 洛谷题面传送门 场号 hopping,刚好是我的学号(指 round 的编号) 注:下文中分别用 \(X,Y,K\) 代替题目中的 \(x,y,k\) 注 ...

  6. Codeforces 1483F - Exam(AC 自动机)

    Codeforces 题目传送门 & 洛谷题目传送门 一道 ACAM 的 hot tea 首先建出 ACAM.考虑枚举长串,以及短串在长串中出现的最后位置 \(j\),这个复杂度显然是 \(\ ...

  7. Codeforces 1332G - No Monotone Triples(数据结构综合)

    Codeforces 题目传送门 & 洛谷题目传送门 首先打表即可发现对于任意长度 \(\ge 5\) 的序列总存在一个 Monotone triple,证明不会实在不行直接 \(5^5\) ...

  8. cat的生产应用

    web日志文件的合并 cat one.log two.log >all.log sort -k 4 all.log   按照第四列进行时间排序

  9. java类加载、对象创建过程

    类加载过程: 1, JVM会先去方法区中找有没有相应类的.class存在.如果有,就直接使用:如果没有,则把相关类的.class加载到方法区 2, 在.class加载到方法区时,会分为两部分加载:先加 ...

  10. A Child's History of England.33

    To strengthen his power, the King with great ceremony betrothed his eldest daughter Matilda, then a ...