Solution -「LOCAL」解析电车
\(\mathcal{Description}\)
给定 \(n\) 个点 \(m\) 条边的无向图,每条边形如 \((u,v,r)\),表示 \(u,v\) 之间有一条阻值为 \(r\Omega\) 的电阻。求 \(S\) 到 \(T\) 的等效电阻。
\(n\le100\),\(m\le\frac{n(n-1)}2\)。
\(\mathcal{Solution}\)
欧姆定律:通过一段电路 \(AB\) 两端的电流为 \(\frac{\varphi_A-\varphi_B}{R_{AB}}\)。
基尔霍夫电流定律:设流入电流为正,流出电流为负,则任意节点有 \(\sum I=0\)。
其中 \(\varphi\) 表示电势(本题中可以粗暴地理解作“高度”,想象成水流从高往低流)。对兔子这种初中电学还没学完的蒟蒻极不友好。
钦定 \(S\) 输出 \(1A\) 的电流,对于每个点,结合上两条定律,有:
\]
但发现如果有解,那么每个 \(\varphi\) 加上同一常数仍是一组解,所以断定存在一个式子与其它 \(n-1\) 个线性相关。随便去掉一个式子,再钦定 \(\varphi_T=0\),就能解出 \(S\) 的电势 \(\varphi_S\)。由于 \(I=\frac{U}R=1A\),所以 \(\varphi_S\) 的数值就是等效电阻的数值。
\(\mathcal{Code}\)
#include <cstdio>
#include <iostream>
const int MAXN = 100;
const double EPS = 1e-9;
int n, m, S, T;
double coe[MAXN + 5][MAXN + 5], I[MAXN + 5], U[MAXN + 5];
inline double abs_ ( const double x ) { return x < 0 ? -x : x; }
inline void Gauss ( double A[MAXN + 5][MAXN + 5], double* B, double* X ) {
for ( int i = 1; i <= n; ++ i ) {
int p = i;
for ( int j = i + 1; j <= n; ++ j ) {
if ( abs_ ( A[j][i] ) > abs_ ( A[p][i] ) ) {
p = j;
}
}
if ( i ^ p ) std::swap ( A[i], A[p] ), std::swap ( B[i], B[p] );
for ( int j = i + 1; j <= n; ++ j ) {
double d = A[j][i] / A[i][i];
for ( int k = i; k <= n; ++ k ) A[j][k] -= d * A[i][k];
B[j] -= d * B[i];
}
}
for ( int i = n; i; -- i ) {
X[i] = B[i] / A[i][i];
for ( int j = i - 1; j; -- j ) B[j] -= A[j][i] * X[i];
}
}
int main () {
freopen ( "electric.in", "r", stdin );
freopen ( "electric.out", "w", stdout );
scanf ( "%d %d %d %d", &n, &m, &S, &T );
for ( int i = 1; i < n; ++ i ) I[i] = ( i == S ) - ( i == T );
for ( int i = 1, u, v, t; i <= m; ++ i ) {
scanf ( "%d %d %d", &u, &v, &t );
double r = 1.0 / t;
if ( u < n ) coe[u][u] += r, coe[u][v] -= r;
if ( v < n ) coe[v][v] += r, coe[v][u] -= r;
}
coe[n][T] = 1;
Gauss ( coe, I, U );
printf ( "%.2f\n", U[S] );
return 0;
}
\(\mathcal{Details}\)
高消记得换系数行的时候顺便换值啊……这种错查了快 \(2min\) qwq……
Solution -「LOCAL」解析电车的更多相关文章
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
随机推荐
- Linux上天之路(十)之Linux磁盘管理
主要内容 磁盘介绍 磁盘管理 磁盘限额 逻辑卷管理 磁盘阵列 1. 磁盘介绍 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等.每个盘片有两面,都可记录信息.盘片 ...
- Hive的导入导出和常用过滤语句的学习
原文: https://www.toutiao.com/i6769166601871688196/?group_id=6769166601871688196 数据的导入 load data [loca ...
- HW防守 | Linux应急响应基础
最近也是拿到了启明星辰的暑期实习offer,虽然投的是安服,但主要工作是护网,昨天在公众号Timeline Sec上看到有一篇关于护网的文章,所以在这里照着人家写的在总结一下,为将来的工作打点基础. ...
- 使用医学影像开源库cornerstone.js解析Dicom图像显示到HTML中
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- unity3d inputfield标签控制台打印object
inputfield标签控制台打印object 这说明没有字符串给入 这是因为 inputfield下的text不能人为写入值,只能在game界面输入. 所以这个标签里的text做个默认值不好搞.
- Servlet-通过继承HttpServlet类实现Servlet程序
通过继承HttpServlet类实现Servlet程序(开发一般用) 一般在实际项目开发中,都是使用继承 HttpServlet类的方式实现Servlet程序 1,编写一个类去继承 HttpServl ...
- linux中cut命令与tr命令
目录 一:linux中cut命令 1.cut 命令作用 2.参数 3.参数案例解析: 二:tr命令 1.tr命令作用 2.tr命令格式 3.tr命令参数 4.案例解析: 一:linux中cut命令 1 ...
- shell脚本的分发,测试,查看
#!/bin/bash for i in {2..64} do #远端复制文件或目录 rcp /test/cpuburn-in 10.1.1.$i:/test/ done #!/bin/bash fo ...
- 手写简单call,apply,bind
分析一下call的使用方法:call是显示绑定this指向,然后第一个参数是你所指向的this对象,后面跟着多个参数,以逗号隔开 function sum(num1,num2){ return num ...
- PriorityQueue的用法和底层实现原理
定义 PriorityQueue类在Java1.5中引入并作为 Java Collections Framework 的一部分.PriorityQueue是基于优先堆的一个无界队列,这个优先队列中的元 ...