【论文总结】Zero-Shot Semantic Segmentation
论文地址:https://arxiv.org/abs/1906.00817
代码:https://github.com/valeoai/ZS3
一、内容
Step 0:首先使用数据集(完全不包含 Unseen Classes 的图片)训练 DeepLabv3+ 模型,得到的模型可以对只含有 Seen Classes 的图片进行分类,去掉训练好的 DeepLabv3+ 的最后一层分类层,将其变成一个特征提取器。将所有 Classes 输入到 w2c 模型,得到每个Class 对应的向量,将此向量连接到 ground-truth 中每个像素上,即每个像素都有其对应的类的向量。
Step 1:使用数据集(完全不包含 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,得到特征图,根据 ground-truth 上的 Class 筛选出不同类别的特征,将每个类的特征作为 Label,对应类的 w2c 输出的向量作为输入,训练 GMMN 模型。
Step 2:使用完整数据集 (包含 Seen 和 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,如果不包含 Unseen Classes,那么直接拿出特征图去训练最终的分类器,如果包含,则根据图片的 ground-truth 对应的类的向量一一生成特征,将不同类特征组合到一起,再去训练最终的分类器。
二、理解
1. 代码中将 Step 1 和 2 和在了一起,为了便于理解,把 Step 1 和 2 分开解释。
2. Step 2 中使用了两次包含 Unseen Classes 的图像和其 ground-truth。
- 在逐个对类的词向量生成特征时,用到了 ground-truth,根据 ground-truth 知道了类的总数、每个类的位置、以及对应的词向量。
- 在最终训练分类器时,也用到了含有 Unseen Class 的图像的 ground-truth。
- 也可以直接忽略 DeepLab 生成的特征图,直接根据 Seen 和 Unseen 标签随机生成图片,利用类的词向量通过 GMMN 生成特征,结合生成的图片的 Label 去训练最终分类器。
3. w2c 和 GMMN 是文章的关键,w2c 建立了一个从词语到向量的联系,GMMN 建立了一个从词向量到特征图上的视觉特征的联系,比如,使用 Unseen Class 为子弹,Seen Class 中包括弹匣,其他都是些不相干的类,自然子弹和弹匣在词向量中的联系比较起来相对紧密,从而子弹通过 GMMN 生成的特征也更与弹匣类似,通过最终分类器的训练,也就更容易能分辨出子弹。
【论文总结】Zero-Shot Semantic Segmentation的更多相关文章
- 论文笔记《Feedforward semantic segmentation with zoom-out features》
[论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,f ...
- 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...
- Semi-supervised semantic segmentation needs strong, varied perturbations
论文阅读: Semi-supervised semantic segmentation needs strong, varied perturbations 作者声明 版权声明:本文为博主原创文章,遵 ...
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...
- 论文笔记(3):STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pi ...
- 2018年发表论文阅读:Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supe ...
- 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...
- 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...
- 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...
随机推荐
- java 多态 总结
1.前言 引用教科书解释: 多态是同一个行为具有多个不同表现形式或形态的能力. 多态就是同一个接口,使用不同的实例而执行不同操作. 通俗来说: 总结:多态的抽象类与接口有点相似: 父类不需要具体实现方 ...
- Hive的连接和运行模式
原文链接: https://www.toutiao.com/i6771018203687551495/ Hive的连接 启动hadoop的时候将history也启动,如果出问题,可以方便我们后续定位 ...
- MapReduce和Hive学习文档链接学习顺序
1.<CentOS6.5下安装Hadoop-2.7.3(图解教程)> https://www.toutiao.com/i6627365258090512909/ 2.<CentOS6 ...
- 曾经大量使用的Model1开发模式,虽不常用,但可以帮我们理解JSP
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513394762370777604/ 1.<JSP页面实际上就是Servlet> 2.<JSP页 ...
- 攻防世界-进阶-[re1-100]
一.收集程序信息 64位的ELF文件,没有壳 二.放入IDA 使用64位IDA打开文件,先进行静态分析查看伪代码,进入main函数 通过这段可以得知输入的内容存储到了input中(这里我将bufwri ...
- Appium+python自动化测试过程中问题
一.自动删除contactmanager 自动化测试appium提供的sample如下包/activity:com.example.android.contactmanager/.ContactMan ...
- Android官方文档翻译 十 2.3Styling the Action Bar
Styling the Action Bar 设计菜单栏的样式 This lesson teaches you to 这节课教给你 Use an Android Theme 使用一个Android主题 ...
- Android官方文档翻译 五 1.3Building a Simple User Interface
Building a Simple User Interface 创建一个简单的用户界面 This lesson teaches you to 这节课将教给你: Create a Linear Lay ...
- 2022 跳槽涨薪必不可少面试通关宝典 —— css 篇
生于忧患死于安乐!已经居家隔离 23 天了,解封以后估计就得找工作了,提前准备起来!需要的赶紧收藏起来 一.谈谈你对 BFC 的理解及作用. BFC 是 Block Formatting Contex ...
- 《剑指offer》面试题49. 丑数
问题描述 我们把只包含因子 2.3 和 5 的数称作丑数(Ugly Number).求按从小到大的顺序的第 n 个丑数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, 5 ...