Lesson3——NumPy 数据类型
NumPy 教程目录
NumPy 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。
下表列举了常用 NumPy 基本类型。
| 名称 | 描述 |
|---|---|
| bool_ | 布尔型数据类型(True 或者 False) |
| int_ | 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) |
| intc | 与 C 的 int 类型一样,一般是 int32 或 int 64 |
| intp | 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) |
| int8 | 字节(-128 to 127) |
| int16 | 整数(-32768 to 32767) |
| int32 | 整数(-2147483648 to 2147483647) |
| int64 | 整数(-9223372036854775808 to 9223372036854775807) |
| uint8 | 无符号整数(0 to 255) |
| uint16 | 无符号整数(0 to 65535) |
| uint32 | 无符号整数(0 to 4294967295) |
| uint64 | 无符号整数(0 to 18446744073709551615) |
| float_ | float64 类型的简写 |
| float16 | 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 |
| float32 | 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 |
| float64 | 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 |
| complex_ | complex128 类型的简写,即 128 位复数 |
| complex64 | 复数,表示双 32 位浮点数(实数部分和虚数部分) |
| complex128 | 复数,表示双 64 位浮点数(实数部分和虚数部分) |
numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。
数据类型对象 (dtype)
数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::
- 数据的类型(整数,浮点数或者 Python 对象)
- 数据的大小(例如, 整数使用多少个字节存储)
- 数据的字节顺序(小端法或大端法)
- 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
- 如果数据类型是子数组,那么它的形状和数据类型是什么。
字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
numpy.dtype 对象是使用以下语法构造的:
numpy.dtype(dtype, align=False, copy=False)
See also
Examples:
np.result_type(3, np.arange(7, dtype='i1'))
#dtype('int8') np.result_type('i4', 'c8')
#dtype('complex128') np.result_type(3.0, -2)
#dtype('float64')
使用 Numpy 数据类型的例子:
Examples1:
dt = np.dtype(np.int32)
print(dt)
#int32
Examples2:
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
#int32
Examples3: 字节顺序标注
dt = np.dtype('<i4')
dt
#dtype('int32')
Examples4:使用内建类型到 np.array() 上。
dt = np.dtype('i4')
print(dt)
arr = np.array([1,2,3],dtype = dt)
print(arr)
int32
[1 2 3]
Examples5:初始结构化类型
dt = np.dtype([('age',np.int8)])
dt
dtype([('age', 'i1')])
Examples6:应用结构化类型(单个类型)
dt = np.dtype([('age',np.int8)])
a = np.array([(1,),(2,),(3,),(4,)],dtype= dt)
print(a)
print(a['age'])
[(1,) (2,) (3,) (4,)]
[1 2 3 4]
Examples7:应用结构化类型(多个类型)
dt = np.dtype([('name','S20'),('age','i1')])
print(dt)
arr = np.array([('Blair1',21),
('Blair2',22),
('Blair3',23),])
print(arr)
[('name', 'S20'), ('age', 'i1')]
[['Blair1' '21']
['Blair2' '22']
['Blair3' '23']]
每个内建类型都有一个唯一定义它的字符代码,如下:
| 字符 | 对应类型 |
|---|---|
| b | 布尔型 |
| i | (有符号) 整型 |
| u | 无符号整型 integer |
| f | 浮点型 |
| c | 复数浮点型 |
| m | timedelta(时间间隔) |
| M | datetime(日期时间) |
| O | (Python) 对象 |
| S, a | (byte-)字符串 |
| U | Unicode |
| V | 原始数据 (void) |
Lesson3——NumPy 数据类型的更多相关文章
- Numpy 数据类型和基本操作
Numpy 数据类型 bool 用一位存储的布尔类型(值为TRUE或FALSE) inti 由所在平台决定其精度的整数(一般为int32或int64) int8 整数,范围为128至127 int1 ...
- NumPy数据类型
NumPy - 数据类型 NumPy 支持比 Python 更多种类的数值类型. 下表显示了 NumPy 中定义的不同标量数据类型. 序号 数据类型及描述 1. bool_存储为一个字节的布尔值(真或 ...
- numpy 数据类型与 Python 原生数据类型
查看 numpy 数据类型和 Python 原生数据类型之间的对应关系: In [51]: dict([(d, type(np.zeros(1,d).tolist()[0])) for d in (n ...
- 2、NumPy 数据类型
1.NumPy 数据类型 numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型.下表列举了常用 NumP ...
- Numpy 数据类型
numpy支持的数据类型比Python内置的类型多很多,基本上可以和C语言的数据类型对应上, 其中部分类型对应为Python内置的类型.下表列举了常用的Numpy基本类型. 名称 描述 bool_ 布 ...
- Numpy数据类型转化astype,dtype
1. 查看数据类型 import numpy as np arr = np.array([1,2,3,4,5]) print(arr) [1 2 3 4 5] # dtype用来查看数据类型 arr. ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 数据类型
下表列举了常用 NumPy 基本类型. 名称 描述 bool_ 布尔型数据类型(True 或者 False) int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) i ...
- numpy数据类型dtype转换
这篇文章我们玩玩numpy的数值数据类型转换 导入numpy >>> import numpy as np 一.随便玩玩 生成一个浮点数组 >>> a = np.r ...
- NumPy 教程目录
NumPy 教程目录 1 Lesson1--NumPy NumPy 安装 2 Lesson2--NumPy Ndarray 对象 3 Lesson3--NumPy 数据类型 4 Lesson4--Nu ...
随机推荐
- Doing Homework(hdu)1074
Doing Homework Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- 1108 - Instant View of Big Bang
1108 - Instant View of Big Bang PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limi ...
- 来自Java程序员的Python新手入门小结
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Redis OM .NET Redis对象映射框架
Redis OM Redis OM 是 Redis 官方推出的对象映射框架,即:Object Mapping.让开发人员更简单.方便的操作 Redis 数据.Redis 存储的数据抽象为对象映射,支持 ...
- Django_MVT(二)
一.MVT简介 M全拼为Model,与MVC中的M功能相同,负责和数据库交互,进行数据处理. V全拼为View,与MVC中的C功能相同,接收请求,进行业务处理,返回应答. T全拼为Template,与 ...
- python中类对象、实例对象、类属性、实例属性、类方法、实例方法、静态方法
类对象.类属性与实例对象.实例属性的区别 在Python中一切皆是对象,类是一个特殊的对象即类对象,描述类的属性称为类属性.类属性在内存中只有一份,在__init__外部定义. 通过类创建的对象称为实 ...
- nginx - win系统启动一闪而过 ,服务没有启动成功
这种现象是因为配置文件里配置的服务监听端口被占了
- Leetcode系列之两数之和
Leetcode系列之两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标.你可以假设每种输入只会对应一个答案.但是,你 ...
- PPT2010制作充电动画
原文: https://www.toutiao.com/i6492264647318569486/ 启动PPT2010,新建一张空白幻灯片 选择"插入"选项卡,"插图&q ...
- 软件开发架构与网络之OSI七层协议(五层)
本期内容概要 python回顾 软件开发架构 网络理论前瞻 osi七层协议(五层) 以太网协议 IP协议 port协议 交换机 路由器 局域网 广域网 TCP协议 三次握手 四次挥手 UDP协议 内容 ...