黎曼曲面Riemann Surface
黎曼曲面Riemann Surface

A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, "sheets." These sheets can have very complicated structures and interconnections (Knopp 1996, pp. 98-99). Riemann surfaces are one way of representing multiple-valued functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation
黎曼曲面是一种类似于曲面的结构,它覆盖了多个,通常是无限多个的“片”。这些片可以有非常复杂的结构和相互连接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函数(功能)的一种方法;另一种是分支切割。上图显示了方程解的黎曼曲面。

其中d=2, 3, 4, and 5, where w(z) is the Lambert W-function (M. Trott).
The Riemann surface S of the function field K is the set of nontrivial
discrete valuations on K. Here, the set S corresponds to the ideals of the ring A of K integers of K over C(z) . ( A consists of the elements
of K that are roots of monic polynomials over C(z) .) Riemann surfaces provide a geometric visualization of functions elements and their analytic
continuations.
函数(功能)域K的Riemann曲面S是K上的一组非平凡离散赋值集,这里的S对应于C(z)上K的整数环A的理想。(A由K的元素组成,这些元素是C[z]上的一元多项式的根)。Riemann曲面提供了函数(功能)元素及其解析连续性的几何可视化。
Schwarz proved at the end of nineteenth century that the automorphism
group of a compact Riemann surface of genus g>=2 is finite, and Hurwitz (1893) subsequently showed that its order is at most 84(g-1) (Arbarello et
al. 1985, pp. 45-47; Karcher and Weber 1999, p. 9). This bound is attained for infinitely many g, with the smallest of g such an extremal surface being 3 (corresponding to the Klein quartic). However, it is also known that there are infinitely many genera for which the bound 84(g-1) is not attained (Belolipetsky 1997, Belolipetsky and Jones).
Schwarz在十九世纪末证明了亏格g>=2的紧致黎曼曲面的自同构群是有限的,Hurwitz(1893)随后证明了它的阶至多为84(g-1)(Arbarello等人。1985年,第45-47页;卡彻和韦伯1999年,第9页)。对于无穷多的g,这个界是得到的,并且这样一个极值曲面的最小g是3(对应于Klein四次曲线)。然而,我们也知道,有无限多的属没有达到84(g-1)的界限(belloipetsky 1997,belloipetsky和Jones)。
黎曼曲面Riemann Surface的更多相关文章
- 普林斯顿数学指南(第一卷) (Timothy Gowers 著)
第I部分 引论 I.1 数学是做什么的 I.2 数学的语言和语法 I.3 一些基本的数学定义 I.4 数学研究的一般目的 第II部分 现代数学的起源 II.1 从数到数系 II.2 几何学 II.3 ...
- Geometry Surface of OpenCascade BRep
Geometry Surface of OpenCascade BRep eryar@163.com 摘要Abstract:几何曲面是参数表示的曲面 ,在边界表示中其数据存在于BRep_TFace中, ...
- OpenCASCADE构造一般曲面
OpenCASCADE构造一般曲面 eryar@163.com Abstract. 本文主要介绍常见的曲面如一般柱面(拉伸曲面).旋转面在OpenCASCADE中的构造方法,由此思考一般放样算法的实现 ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- 流形(Manifold)初步【转】
转载自:http://blog.csdn.net/wangxiaojun911/article/details/17076465 欧几里得几何学(Euclidean Geometry) 两千三百年前, ...
- 流形(Manifold)初步
原文链接 欧几里得几何学(Euclidean Geometry) 两千三百年前,古希腊数学家欧几里得著成了<几何原本>,构建了被后世称为“欧几里得几何学”的研究图形的方法.欧几里得创立了当 ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记
The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...
- Topology and Geometry in OpenCascade-Face
Topology and Geometry in OpenCascade-Face eryar@163.com 摘要Abstract:本文简要介绍了几何造型中的边界表示法(BRep),并结合程序说明O ...
- Open Cascade DataExchange IGES
Open Cascade DataExchange IGES eryar@163.com 摘要Abstract:本文结合OpenCascade和Initial Graphics Exchange Sp ...
随机推荐
- hdu1505 暴力或dp优化
题意: 给你一个矩阵,让你在里面找到一个最大的f矩阵.. 思路: 三种方法ac这到题目; 方法(1) 以宽为主,暴力 开一个数组sum[i][j],记录当前这个位置的 ...
- 路由器逆向分析------MIPS交叉编译环境的搭建(Buildroot)
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/68950682 为了能在我们熟悉的windows或者ubuntu下开发mips架构的 ...
- hdu5033 最大仰望角
题意: 给你n个楼房排成一条直线,楼房可以看成是宽度为1的线段,然后给你m组询问,每组询问给你一个坐标,输出在当前坐标仰望天空的可视角度. 思路: n比较大,O(n*m)肯定跪 ...
- 绕过网站WAF(图片绕过)
当我们在渗透一个网站的时候,很多时候,会遇到下面这种情况.网站装有WAF,把我们的SQL注入语句给拦截了. 这就是网站的安全狗 此时,我们的渗透会陷入僵局.到底应该如何才能让我们的语句绕过安全狗的检查 ...
- Caddy-基于go的微型serve用来做反向代理和Gateway
1.简单配置 2.go实现,直接一个二进制包,没依赖. 3.默认全站https 常用 反向代理,封装多端口gateway 使用:启动直接执行二进制文件 caddy 就行 根据输出信息 直接https: ...
- 记一次CTF的签到题
开篇 打开题目网站 首先看到的是一个人博客,功能点非常少,功能较多的页面就是留言板了 一开始没啥思路,就想着抓包能不能找到SQL注入无果,在这个地方卡了很久 柳暗花明 在乱点的时候,无意中发现题目中的 ...
- 如何在spring boot中从控制器返回一个html页面?
项目截图 解决方法 我之前用的@RestController注解,而@RestController这个控制器返回数据而不是视图,改成@Controller 就好了(以下是修改后的) @Controll ...
- Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3)
A.In-game Chat 题目:就是从后面数连着的'('的个数是不是严格比剩下的字符多 思路:水题,直接从后往前遍历即可 代码: #include<iostream> #include ...
- Java中对象池的本质是什么?(实战分析版)
简介 对象池顾名思义就是存放对象的池,与我们常听到的线程池.数据库连接池.http连接池等一样,都是典型的池化设计思想. 对象池的优点就是可以集中管理池中对象,减少频繁创建和销毁长期使用的对象,从而提 ...
- zabbix监控之概念和安装
一.为什么要要监控 (1)在需要的时刻,提前提醒我们服务器出问题了: (2)当出问题之后,可以找到问题的根源: (3)检查网站/服务器的可用性 1.监控范畴 硬件监控.系统监控.服务监控.性能监控.日 ...