黎曼曲面Riemann Surface

A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, "sheets." These sheets can have very complicated structures and interconnections (Knopp 1996, pp. 98-99). Riemann surfaces are one way of representing multiple-valued functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation

黎曼曲面是一种类似于曲面的结构,它覆盖了多个,通常是无限多个的“片”。这些片可以有非常复杂的结构和相互连接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函数(功能)的一种方法;另一种是分支切割。上图显示了方程解的黎曼曲面。

其中d=2, 3, 4, and 5, where w(z)  is the Lambert W-function (M. Trott).
The Riemann surface  S of the function field K is the set of nontrivial
discrete valuations on K. Here, the set  S corresponds to the ideals of the ring  A of K integers of  K over C(z) . ( A consists of the elements
of K that are roots of monic polynomials over C(z) .) Riemann surfaces provide a geometric visualization of functions elements and their analytic
continuations.
函数(功能)域K的Riemann曲面S是K上的一组非平凡离散赋值集,这里的S对应于C(z)上K的整数环A的理想。(A由K的元素组成,这些元素是C[z]上的一元多项式的根)。Riemann曲面提供了函数(功能)元素及其解析连续性的几何可视化。
Schwarz proved at the end of nineteenth century that the automorphism
group of a compact Riemann surface of genus g>=2 is finite, and Hurwitz (1893) subsequently showed that its order is at most  84(g-1) (Arbarello et
al. 1985, pp. 45-47; Karcher and Weber 1999, p. 9). This bound is attained for infinitely many g, with the smallest  of g such an extremal surface being 3 (corresponding to the Klein quartic). However, it is also known that there are infinitely many genera for which the bound 84(g-1) is not attained (Belolipetsky 1997, Belolipetsky and Jones).
Schwarz在十九世纪末证明了亏格g>=2的紧致黎曼曲面的自同构群是有限的,Hurwitz(1893)随后证明了它的阶至多为84(g-1)(Arbarello等人。1985年,第45-47页;卡彻和韦伯1999年,第9页)。对于无穷多的g,这个界是得到的,并且这样一个极值曲面的最小g是3(对应于Klein四次曲线)。然而,我们也知道,有无限多的属没有达到84(g-1)的界限(belloipetsky 1997,belloipetsky和Jones)。

 

黎曼曲面Riemann Surface的更多相关文章

  1. 普林斯顿数学指南(第一卷) (Timothy Gowers 著)

    第I部分 引论 I.1 数学是做什么的 I.2 数学的语言和语法 I.3 一些基本的数学定义 I.4 数学研究的一般目的 第II部分 现代数学的起源 II.1 从数到数系 II.2 几何学 II.3 ...

  2. Geometry Surface of OpenCascade BRep

    Geometry Surface of OpenCascade BRep eryar@163.com 摘要Abstract:几何曲面是参数表示的曲面 ,在边界表示中其数据存在于BRep_TFace中, ...

  3. OpenCASCADE构造一般曲面

    OpenCASCADE构造一般曲面 eryar@163.com Abstract. 本文主要介绍常见的曲面如一般柱面(拉伸曲面).旋转面在OpenCASCADE中的构造方法,由此思考一般放样算法的实现 ...

  4. How to do Mathematics

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...

  5. 流形(Manifold)初步【转】

    转载自:http://blog.csdn.net/wangxiaojun911/article/details/17076465 欧几里得几何学(Euclidean Geometry) 两千三百年前, ...

  6. 流形(Manifold)初步

    原文链接 欧几里得几何学(Euclidean Geometry) 两千三百年前,古希腊数学家欧几里得著成了<几何原本>,构建了被后世称为“欧几里得几何学”的研究图形的方法.欧几里得创立了当 ...

  7. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  8. Topology and Geometry in OpenCascade-Face

    Topology and Geometry in OpenCascade-Face eryar@163.com 摘要Abstract:本文简要介绍了几何造型中的边界表示法(BRep),并结合程序说明O ...

  9. Open Cascade DataExchange IGES

    Open Cascade DataExchange IGES eryar@163.com 摘要Abstract:本文结合OpenCascade和Initial Graphics Exchange Sp ...

随机推荐

  1. hdu1505 暴力或dp优化

    题意:        给你一个矩阵,让你在里面找到一个最大的f矩阵.. 思路:       三种方法ac这到题目;  方法(1) 以宽为主,暴力    开一个数组sum[i][j],记录当前这个位置的 ...

  2. 路由器逆向分析------MIPS交叉编译环境的搭建(Buildroot)

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/68950682 为了能在我们熟悉的windows或者ubuntu下开发mips架构的 ...

  3. hdu5033 最大仰望角

    题意:       给你n个楼房排成一条直线,楼房可以看成是宽度为1的线段,然后给你m组询问,每组询问给你一个坐标,输出在当前坐标仰望天空的可视角度. 思路:       n比较大,O(n*m)肯定跪 ...

  4. 绕过网站WAF(图片绕过)

    当我们在渗透一个网站的时候,很多时候,会遇到下面这种情况.网站装有WAF,把我们的SQL注入语句给拦截了. 这就是网站的安全狗 此时,我们的渗透会陷入僵局.到底应该如何才能让我们的语句绕过安全狗的检查 ...

  5. Caddy-基于go的微型serve用来做反向代理和Gateway

    1.简单配置 2.go实现,直接一个二进制包,没依赖. 3.默认全站https 常用 反向代理,封装多端口gateway 使用:启动直接执行二进制文件 caddy 就行 根据输出信息 直接https: ...

  6. 记一次CTF的签到题

    开篇 打开题目网站 首先看到的是一个人博客,功能点非常少,功能较多的页面就是留言板了 一开始没啥思路,就想着抓包能不能找到SQL注入无果,在这个地方卡了很久 柳暗花明 在乱点的时候,无意中发现题目中的 ...

  7. 如何在spring boot中从控制器返回一个html页面?

    项目截图 解决方法 我之前用的@RestController注解,而@RestController这个控制器返回数据而不是视图,改成@Controller 就好了(以下是修改后的) @Controll ...

  8. Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3)

    A.In-game Chat 题目:就是从后面数连着的'('的个数是不是严格比剩下的字符多 思路:水题,直接从后往前遍历即可 代码: #include<iostream> #include ...

  9. Java中对象池的本质是什么?(实战分析版)

    简介 对象池顾名思义就是存放对象的池,与我们常听到的线程池.数据库连接池.http连接池等一样,都是典型的池化设计思想. 对象池的优点就是可以集中管理池中对象,减少频繁创建和销毁长期使用的对象,从而提 ...

  10. zabbix监控之概念和安装

    一.为什么要要监控 (1)在需要的时刻,提前提醒我们服务器出问题了: (2)当出问题之后,可以找到问题的根源: (3)检查网站/服务器的可用性 1.监控范畴 硬件监控.系统监控.服务监控.性能监控.日 ...