简介

Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析。本文将会详细讲解如何使用Pandas来合并Series和Dataframe。

使用concat

concat是最常用的合并DF的方法,先看下concat的定义:

pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,
levels=None, names=None, verify_integrity=False, copy=True)

看一下我们经常会用到的几个参数:

objs是Series或者Series的序列或者映射。

axis指定连接的轴。

join : {‘inner’, ‘outer’}, 连接方式,怎么处理其他轴的index,outer表示合并,inner表示交集。

ignore_index: 忽略原本的index值,使用0,1,… n-1来代替。

copy:是否进行拷贝。

keys:指定最外层的多层次结构的index。

我们先定义几个DF,然后看一下怎么使用concat把这几个DF连接起来:

In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
...: 'B': ['B0', 'B1', 'B2', 'B3'],
...: 'C': ['C0', 'C1', 'C2', 'C3'],
...: 'D': ['D0', 'D1', 'D2', 'D3']},
...: index=[0, 1, 2, 3])
...: In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
...: 'B': ['B4', 'B5', 'B6', 'B7'],
...: 'C': ['C4', 'C5', 'C6', 'C7'],
...: 'D': ['D4', 'D5', 'D6', 'D7']},
...: index=[4, 5, 6, 7])
...: In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
...: 'B': ['B8', 'B9', 'B10', 'B11'],
...: 'C': ['C8', 'C9', 'C10', 'C11'],
...: 'D': ['D8', 'D9', 'D10', 'D11']},
...: index=[8, 9, 10, 11])
...: In [4]: frames = [df1, df2, df3] In [5]: result = pd.concat(frames)

df1,df2,df3定义了同样的列名和不同的index,然后将他们放在frames中构成了一个DF的list,将其作为参数传入concat就可以进行DF的合并。

举个多层级的例子:

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

使用keys可以指定frames中不同frames的key。

使用的时候,我们可以通过选择外部的key来返回特定的frame:

In [7]: result.loc['y']
Out[7]:
A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7

上面的例子连接的轴默认是0,也就是按行来进行连接,下面我们来看一个例子按列来进行连接,如果要按列来连接,可以指定axis=1:

In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
...: 'D': ['D2', 'D3', 'D6', 'D7'],
...: 'F': ['F2', 'F3', 'F6', 'F7']},
...: index=[2, 3, 6, 7])
...: In [9]: result = pd.concat([df1, df4], axis=1, sort=False)

默认的 join='outer',合并之后index不存在的地方会补全为NaN。

下面看一个join='inner'的情况:

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

join='inner' 只会选择index相同的进行展示。

如果合并之后,我们只想保存原来frame的index相关的数据,那么可以使用reindex:

In [11]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)

或者这样:

In [12]: pd.concat([df1, df4.reindex(df1.index)], axis=1)
Out[12]:
A B C D B D F
0 A0 B0 C0 D0 NaN NaN NaN
1 A1 B1 C1 D1 NaN NaN NaN
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3

看下结果:

可以合并DF和Series:

In [18]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')

In [19]: result = pd.concat([df1, s1], axis=1)

如果是多个Series,使用concat可以指定列名:

In [23]: s3 = pd.Series([0, 1, 2, 3], name='foo')

In [24]: s4 = pd.Series([0, 1, 2, 3])

In [25]: s5 = pd.Series([0, 1, 4, 5])
In [27]: pd.concat([s3, s4, s5], axis=1, keys=['red', 'blue', 'yellow'])
Out[27]:
red blue yellow
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5

使用append

append可以看做是concat的简化版本,它沿着axis=0 进行concat:

In [13]: result = df1.append(df2)

如果append的两个 DF的列是不一样的会自动补全NaN:

In [14]: result = df1.append(df4, sort=False)

如果设置ignore_index=True,可以忽略原来的index,并重写分配index:

In [17]: result = df1.append(df4, ignore_index=True, sort=False)

向DF append一个Series:

In [35]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [36]: result = df1.append(s2, ignore_index=True)

使用merge

和DF最类似的就是数据库的表格,可以使用merge来进行类似数据库操作的DF合并操作。

先看下merge的定义:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None)

Left, right是要合并的两个DF 或者 Series。

on代表的是join的列或者index名。

left_on:左连接

right_on:右连接

left_index: 连接之后,选择使用左边的index或者column。

right_index:连接之后,选择使用右边的index或者column。

how:连接的方式,'left', 'right', 'outer', 'inner'. 默认 inner.

sort: 是否排序。

suffixes: 处理重复的列。

copy: 是否拷贝数据

先看一个简单merge的例子:

In [39]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
....: 'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3']})
....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
....: 'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']})
....: In [41]: result = pd.merge(left, right, on='key')

上面两个DF通过key来进行连接。

再看一个多个key连接的例子:

In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
....: 'key2': ['K0', 'K1', 'K0', 'K1'],
....: 'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3']})
....: In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
....: 'key2': ['K0', 'K0', 'K0', 'K0'],
....: 'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']})
....: In [44]: result = pd.merge(left, right, on=['key1', 'key2'])

How 可以指定merge方式,和数据库一样,可以指定是内连接,外连接等:

合并方法 SQL 方法
left LEFT OUTER JOIN
right RIGHT OUTER JOIN
outer FULL OUTER JOIN
inner INNER JOIN
In [45]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])

指定indicator=True ,可以表示具体行的连接方式:

In [60]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left': ['a', 'b']})

In [61]: df2 = pd.DataFrame({'col1': [1, 2, 2], 'col_right': [2, 2, 2]})

In [62]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[62]:
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

如果传入字符串给indicator,会重命名indicator这一列的名字:

In [63]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[63]:
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

多个index进行合并:

In [112]: leftindex = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
.....: ('K1', 'X2')],
.....: names=['key', 'X'])
.....: In [113]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
.....: 'B': ['B0', 'B1', 'B2']},
.....: index=leftindex)
.....: In [114]: rightindex = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
.....: ('K2', 'Y2'), ('K2', 'Y3')],
.....: names=['key', 'Y'])
.....: In [115]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
.....: 'D': ['D0', 'D1', 'D2', 'D3']},
.....: index=rightindex)
.....: In [116]: result = pd.merge(left.reset_index(), right.reset_index(),
.....: on=['key'], how='inner').set_index(['key', 'X', 'Y'])

支持多个列的合并:

In [117]: left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')

In [118]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
.....: 'B': ['B0', 'B1', 'B2', 'B3'],
.....: 'key2': ['K0', 'K1', 'K0', 'K1']},
.....: index=left_index)
.....: In [119]: right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1') In [120]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
.....: 'D': ['D0', 'D1', 'D2', 'D3'],
.....: 'key2': ['K0', 'K0', 'K0', 'K1']},
.....: index=right_index)
.....: In [121]: result = left.merge(right, on=['key1', 'key2'])

使用join

join将两个不同index的DF合并成一个。可以看做是merge的简写。

In [84]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
....: 'B': ['B0', 'B1', 'B2']},
....: index=['K0', 'K1', 'K2'])
....: In [85]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
....: 'D': ['D0', 'D2', 'D3']},
....: index=['K0', 'K2', 'K3'])
....: In [86]: result = left.join(right)

可以指定how来指定连接方式:

In [87]: result = left.join(right, how='outer')

默认join是按index来进行连接。

还可以按照列来进行连接:

In [91]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3'],
....: 'key': ['K0', 'K1', 'K0', 'K1']})
....: In [92]: right = pd.DataFrame({'C': ['C0', 'C1'],
....: 'D': ['D0', 'D1']},
....: index=['K0', 'K1'])
....: In [93]: result = left.join(right, on='key')

单个index和多个index进行join:

In [100]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
.....: 'B': ['B0', 'B1', 'B2']},
.....: index=pd.Index(['K0', 'K1', 'K2'], name='key'))
.....: In [101]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
.....: ('K2', 'Y2'), ('K2', 'Y3')],
.....: names=['key', 'Y'])
.....: In [102]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
.....: 'D': ['D0', 'D1', 'D2', 'D3']},
.....: index=index)
.....: In [103]: result = left.join(right, how='inner')

列名重复的情况:

In [122]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [123]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [124]: result = pd.merge(left, right, on='k')

可以自定义重复列名的命名规则:

In [125]: result = pd.merge(left, right, on='k', suffixes=('_l', '_r'))

覆盖数据

有时候我们需要使用DF2的数据来填充DF1的数据,这时候可以使用combine_first:

In [131]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
.....: [np.nan, 7., np.nan]])
.....: In [132]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
.....: index=[1, 2])
.....:
In [133]: result = df1.combine_first(df2)

或者使用update:

In [134]: df1.update(df2)

本文已收录于 http://www.flydean.com/04-python-pandas-merge/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

Pandas高级教程之:Dataframe的合并的更多相关文章

  1. Pandas高级教程之:GroupBy用法

    Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...

  2. Pandas高级教程之:处理text数据

    目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...

  3. Pandas高级教程之:处理缺失数据

    目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...

  4. Pandas高级教程之:category数据类型

    目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...

  5. Pandas高级教程之:plot画图详解

    目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...

  6. Pandas高级教程之:统计方法

    目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...

  7. Pandas高级教程之:window操作

    目录 简介 滚动窗口 Center window Weighted window 加权窗口 扩展窗口 指数加权窗口 简介 在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window ...

  8. Pandas高级教程之:稀疏数据结构

    目录 简介 Spare data的例子 SparseArray SparseDtype Sparse的属性 Sparse的计算 SparseSeries 和 SparseDataFrame 简介 如果 ...

  9. Pandas高级教程之:自定义选项

    目录 简介 常用选项 get/set 选项 经常使用的选项 最大展示行数 超出数据展示 最大列的宽度 显示精度 零转换的门槛 列头的对齐方向 简介 pandas有一个option系统可以控制panda ...

随机推荐

  1. LA3027简单带权并查集

    题意:       有n个点,一开始大家都是独立的点,然后给出一些关系,a,b表示a是b的父亲节点,距离是abs(a-b)%1000,然后有一些询问,每次询问一个节点a到父亲节点的距离是多少? 思路: ...

  2. Day001 Typora Markdown语法学习

    # Markdown语法 ## 标题 ### 三级标题 #### 四级标题 注:最多支持到六级标题 ## 字体 **hello,world!** *hello,world!* ***hello,wor ...

  3. 【报错】No converter found for return value of type: class java.util.HashMap

    ssm开发碰到的错误 @ResponseBody的作用是是将java对象转为json格式的数据 @ResponseBody注解标识该方法的返回值直接写回到HTTP响应体中去(而不会被被放置到Model ...

  4. redis 未授权访问(写公钥、写计划任务)

    写公钥 ssh-keygen -t rsa # 生成key (echo -e "\n\n"; cat id_rsa.pub; echo -e "\n\n") & ...

  5. 使用BeanUtils.copyProperties踩坑经历

    1. 原始转换 提起对象转换,每个程序员都不陌生,比如项目中经常涉及到的DO.DTO.VO之间的转换,举个例子,假设现在有个OrderDTO,定义如下所示: public class OrderDTO ...

  6. [Java] 静态代理 动态代理

    原理 静态代理=代理模式 动态代理=代理模式+反射 代理模式可以在不修改被代理对象的基础上,通过扩展代理类,进行一些功能的附加与增强 代理类和被代理类应该共同实现一个接口,或者是共同继承某个类 静态代 ...

  7. 解决nohup: 忽略输入并把输出追加到"nohup.out"或者nohup: 忽略输入重定向错误到标准输出端

    nohup启动脚本的时候,没有指定输出路径,默认使用当前目录的nohup.out 例如下面这句就是默认使用nohup.out作为输出文件: nohup script.sh & 改成下面的,则/ ...

  8. KEIL中查看程序存储空间的大小

    Program Size: Code=86496 RO-data=9064 RW-data=1452 ZI-data=16116 Code是代码占用的空间,RO-data是 Read Only 只读常 ...

  9. brk 和 sbrk 区别

    转自:https://www.cnblogs.com/chengxuyuancc/p/3566710.html brk和sbrk的定义,在man手册中定义了这两个函数: 1 #include < ...

  10. Day_04_xml解析

    xml解析:操作xml文档,将文档中的数据读取到内存中 操作xml文档的方式有两种: 1.解析(读取):将文档中的数据读取到内存中 2.写入:将内存中的数据保存到xml文档中(后期用的并不多) 解析x ...