一. 读取和保存说明

SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式

读取:通用和专用

保存

保存有四种模式:
默认: error : 输出目录存在就报错
append: 向输出目录追加
overwrite : 覆盖写
ignore: 忽略,不写

二. 数据格式

1. Parquet

Spark SQL的默认数据源为Parquet格式。Parquet是一种能够有效存储嵌套数据的列式存储格式。

数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。

读取

val df = spark.read.load("examples/src/main/resources/users.parquet")

保存

//读取json文件格式
var df = spark.read.json("/opt/module/data/input/people.json")
//保存为parquet格式
df.write.mode("append").save("/opt/module/data/output")

2. Json

Spark SQL 能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载JSON 文件。

注意:Spark读取的JSON文件不是传统的JSON文件,每一行都应该是一个JSON串。

数据格式:employees.json

{"name":"Michael"}
{"name":"Andy", "age":30}

1)导入隐式转换

import spark.implicits._

2)读取Json文件

//专用的读取
val df1: DataFrame = sparkSession.read.json("input/employees.json")
//通用读取
val df: DataFrame = sparkSession.read.format("json").load("input/employees.json")

3)保存为Json文件

    //导隐式包,转为DataSet
import sparkSession.implicits.
val ds: Dataset[Emp] = rdd.toDS()
ds.write.mode("overwrite")json("output/emp.json")

3. CSV

CSV: 逗号作为字段分割符的文件

tsv: \t,tab作为字段分割符的文件

读取

    // 通用的读取
val df: DataFrame = sparkSession.read.format("csv").load("input/person.csv")
// 专用的读
val df1: DataFrame = sparkSession.read.csv("input/person.csv")

保存

CSV的参数可以到DataFrameReader 609行查看

//DataFrame
df1.write.option("sep",",").mode("overwrite").csv("output/csv")

4. Mysql

读取

    val props = new Properties()
/*
JDBC中能写什么参数,参考 JDBCOptions 223行
*/
props.put("user","root")
props.put("password","root")
//库名
val df: DataFrame = sparkSession.read.jdbc("jdbc:mysql://localhost:3306/spark_test", "tbl_user", props)
// 全表查询 只显示前N条
df.show()
//指定查询
df.createTempView("user")
sparkSession.sql("select * from user where id > 5").show() //通用的读

通用的读

读取mysql的数据

/**
* @description: 测试读取mysql数据
* @author: HaoWu
* @create: 2020年09月11日
*/
object ReadMysqlTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("readMysql")
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
val ids = List(1,2,3,4).mkString("'", "','", "'")
val resutl = spark
.read
.format("jdbc")
.option("url", "jdbc:mysql://hadoop102:3306/gmall0421?useSSL=false")
.option("user", "root")
.option("password", "root")
.option("query", s"select * from user_info where id in (${ids})")
.load()
.as[UserInfo] // df -> ds
.rdd
.map(userInfo => (userInfo.id, userInfo)) resutl.collect().foreach(print)
}
}

保存

    val list = List(Emp("jack", 2222.22), Emp("jack1", 3222.22), Emp("jack2", 4222.22))
val rdd: RDD[Emp] = sparkSession.sparkContext.makeRDD(list, 1)
//导入隐式包
import sparkSession.implicits._
val ds: Dataset[Emp] = rdd.toDS()
val props = new Properties()
props.put("user","root")
props.put("password","root")
// 表名可以是已经存在的表t1,也可以是一张新表t1(用的多) //专用的写
ds.write.jdbc("jdbc:mysql://localhost:3306/0508","t1",props)
    // 通用的写
ds.write.
option("url","jdbc:mysql://localhost:3306/库名")
//表名
.option("dbtable","t2")
.option("user","root")
.option("password","root")
.mode("append")
.format("jdbc").save()

Spark(十二)【SparkSql中数据读取和保存】的更多相关文章

  1. Spark学习笔记4:数据读取与保存

    Spark对很多种文件格式的读取和保存方式都很简单.Spark会根据文件扩展名选择对应的处理方式. Spark支持的一些常见文件格式如下: 文本文件 使用文件路径作为参数调用SparkContext中 ...

  2. 【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性

    本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). ...

  3. Spark学习之数据读取与保存总结(一)

    一.动机 我们已经学了很多在 Spark 中对已分发的数据执行的操作.到目前为止,所展示的示例都是从本地集合或者普通文件中进行数据读取和保存的.但有时候,数据量可能大到无法放在一台机器中,这时就需要探 ...

  4. MyBatis基础入门《十二》删除数据 - @Param参数

    MyBatis基础入门<十二>删除数据 - @Param参数 描述: 删除数据,这里使用了@Param这个注解,其实在代码中,不使用这个注解也可以的.只是为了学习这个@Param注解,为此 ...

  5. (转)SpringMVC学习(十二)——SpringMVC中的拦截器

    http://blog.csdn.net/yerenyuan_pku/article/details/72567761 SpringMVC的处理器拦截器类似于Servlet开发中的过滤器Filter, ...

  6. Spark学习之数据读取与保存(4)

    Spark学习之数据读取与保存(4) 1. 文件格式 Spark对很多种文件格式的读取和保存方式都很简单. 如文本文件的非结构化的文件,如JSON的半结构化文件,如SequenceFile结构化文件. ...

  7. OpenJDK源码研究笔记(十二):JDBC中的元数据,数据库元数据(DatabaseMetaData),参数元数据(ParameterMetaData),结果集元数据(ResultSetMetaDa

    元数据最本质.最抽象的定义为:data about data (关于数据的数据).它是一种广泛存在的现象,在许多领域有其具体的定义和应用. JDBC中的元数据,有数据库元数据(DatabaseMeta ...

  8. Spark基础:(四)Spark 数据读取与保存

    1.文件格式 Spark对很多种文件格式的读取和保存方式都很简单. (1)文本文件 读取: 将一个文本文件读取为一个RDD时,输入的每一行都将成为RDD的一个元素. val input=sc.text ...

  9. FreeSql (十二)更新数据时指定列

    var connstr = "Data Source=127.0.0.1;Port=3306;User ID=root;Password=root;" + "Initia ...

随机推荐

  1. 最近公共祖先(lca)与树上叉分

    lca的定义不在过多解释, 代码如下: inline void bfs() { queue<int>q; deep[s]=1;q.push(s); while(!q.empty()) { ...

  2. (一)lamp 环境搭建之编译安装apache

    apache的编译安装: 安装步骤大概参考:http://www.cnblogs.com/iyoule/archive/2013/10/24/3385540.html 简单的将分为三步: (1)安装a ...

  3. 官宣 .NET RC 2

    我们很高兴发布 .NET 6 RC(Release Candidate) 2.它是生产环境中支持的两个"go live"候选版本中的第二个. 在过去的几个月里,团队一直专注于质量的 ...

  4. 升级JDK8的坎坷之路

    为更好的适应JAVA技术的发展,使用更先进及前沿的技术.所以推出将我们现在使用的JDK1.6(1.7)及tomcat6(7)升级至JDK1.8及tomcat8,使我们的系统获得更好的性能,更好适应未来 ...

  5. MarkdownPad2 注册码

    邮箱: Soar360@live.com 授权秘钥: GBPduHjWfJU1mZqcPM3BikjYKF6xKhlKIys3i1MU2eJHqWGImDHzWdD6xhMNLGVpbP2M5SN6b ...

  6. python实现直线检测

    目录: (一)原理 (二)代码(标准霍夫线变换,统计概率霍夫线变换) (一)原理 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也 ...

  7. vue实现聊天+图片表情功能

    项目需求是这样的:要求实现类似于微信聊天一样,表情+文字效果 "文字效果" 表情包三种方案 表情包的实现其实可以分为以下三种情况: 表情包:点击表情--直接发送大表情(这种方案其实 ...

  8. 前端:WebP自适应实践

    WebP介绍 WebP 是 Google 推出的一种同时提供了有损和无损两种压缩方式的图片格式,优势体现在其优秀的图像压缩算法,能够带来更小的图片体积,同时拥有更高的的图像质量.根据官方说明,WebP ...

  9. vue闪现问题,出现{{xxx}}解决方法

  10. Linux检测磁盘空间

    在linux中,文件系统将所有的磁盘都并入一个虚拟目录下,在使用新的存储媒体之前,需要把它放到虚拟目录下,这项工作称为挂载. 1.mount命令 mount会输出当前系统上挂载的设备列表,要在虚拟目录 ...