Factorization
Factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x^2 – 4. Matrices possess many kinds of matrix factorizations.
Although integer factorization is a sort of inverse to multiplication, it is much more difficult algorithmically, a fact which is exploited in the RSA cryptosystem to implement public-key cryptography. Pierre de Fermat was unable to discover that the 6th Fermat number 1 + 2^32 is not a prime number.
log(2)=0.3, 20位二进制约6位六进制,32位10位,64位19位, 128位38位。两个8位二进制数相乘,可写成(a*16+b)*(c*16+b)=ac*256+bc*16*ab+bb. *256放在另一个寄存器里,*16分成两截,ab和bb各最多8位。
Manipulating expressions is the basis of algebra. Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E*F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler, and may thus offer some insight on the problem. But factorization is not always possible, and when it is possible, the factors are not always simpler. For example, x^10 - 1 = (x-1)*(x^9 + x^8 + ... + x + 1).
The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minutes of computer time indicates how successfully this problem has been attacked during the past fifteen years. (Erich Kaltofen, 1982) Nowadays, modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. 1000位十进制数有3322个二进制位。量子计算是质变,8个4096位寄存器,baremetal能且仅能分解整数是小量变。我是外行,我不知道4096根线现实不。
Yun, David Y.Y. (1976). On square-free decomposition algorithms SYMSAC '76 Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26–35.
Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.
没有一目了然的。search(github emcd123 PolynomialFactorization) 有用SageMath写的。到 cocalc 试了下:
结果不对。
SageMath is a free open-source mathematics software system. It builds on top of many existing packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers. SageMath-9.3-Installer-v0.6.3.exe 820.72 MB
SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It uses mpmath, which is a free Python library for real and complex floating-point arithmetic with arbitrary precision.
Combinatorics is the branch of mathematics studying the enumeration, combination, and permutation of sets of elements and the mathematical relations that characterize their properties. Mathematicians sometimes use the term "combinatorics" to refer to a larger subset of discrete mathematics that includes graph theory. search(Combinatorics fourier)
六级/考研单词: mathematics, invert, exploit, implement, prime, log, manipulate, algebra, equate, seldom, thereby, insight, compute, finite, moderate, nowadays, digit, tertiary, symposium, hardware, parcel, intelligible, arithmetic, arbitrary, graph
stackoverflow上有人说:把f(x)分解成因式就是找出f(x)=0的所有根。也许有些程序找到的不是1而是0.999999999。可x^4+1=0没有实数根啊。
Factorization的更多相关文章
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
- Factorization Machine因子分解机
隐因子分解机Factorization Machine[http://www. w2bc. com/article/113916] https://my.oschina.net/keyven/blog ...
- 关于NMF(Non-negative Matrix Factorization )
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- Factorization Machine
Factorization Machine Model 如果仅考虑两个样本间的交互, 则factorization machine的公式为: $\hat{y}(\mathbf{x}):=w_0 + \ ...
- 1103. Integer Factorization (30)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...
- Factorization Machines 学习笔记(三)回归和分类
近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- Matrix Factorization, Algorithms, Applications, and Avaliable packages
矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...
- Factorization Machines 学习笔记(四)学习算法
近期学习了一种叫做 Factorization Machines(简称 FM)的算法.它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- Factorization Machines 学习笔记(二)模型方程
近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- 分解机(Factorization Machines)推荐算法原理
对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...
随机推荐
- OpenEuler树莓派基础实验
OpenEuler树莓派基础实验 1.任务详情 1. 参考https://www.cnblogs.com/rocedu/p/14615565.html 完成OpenEuler的安装,提交过程博客和截图 ...
- 如何抓取直播源及视频URL地址-疯狂URL(教程)
直播源介绍 首先,我们来快速了解一下什么是直播源,所谓的直播源,其实就说推流地址,推流地址可能你也不知道是什么,那么我再简单说一下,推流地址就是,当某个直播开播的时候,需要将自己的直播状态实时的展示给 ...
- dotnet 6 使用 CreateSymbolicLink 创建文件夹符号链接
本文告诉大家如何使用 dotnet 6 提供的 Directory.CreateSymbolicLink 和 File.CreateSymbolicLink 方法创建文件夹和文件的符号链接 Direc ...
- Python3使用request/urllib库重定向问题
禁止自动重定向 python3的urllib.request模块发http请求的时候,如果服务器响应30x会自动跟随重定向,返回的结果是重定向后的最终结果而不是30x的响应结果. request是靠H ...
- Java 代码执行流程
Java 代码执行流程 类加载过程 加载 -> 验证 -> 准备 -> 解析 -> 初始化 -> 使用 -> 卸载 类加载时机:代码使用到这个类时 验证阶段 &qu ...
- Java 初始化与清理
用构造器确保初始化 如何自定义构造器(constructor)? 构造器方法的名称与类名相同,并且没有返回值. 需要注意,在定义构方法时,方法名前面不要添加任何的类型说明符,格式:类名(){},构造方 ...
- Django笔记&教程 3-3 模板常用语法
Django 自学笔记兼学习教程第3章第3节--模板常用语法 点击查看教程总目录 本文主要参考:https://docs.djangoproject.com/en/2.2/ref/templates/ ...
- 菜鸡的Java笔记 第三十六 - java 函数式编程
StudyLambda Lambda 指的是函数式编程,现在最为流行的编程模式为面向对象,很多的开发者并不认可面向对象,所以很多的开发者宁愿继续使用 C 语言进行开发,也不愿意使用java,c+ ...
- [EntityFramework]记录Linq中如何比较数据库中Timestamp列的方法(如大于0x00000000000007D1的记录)
Timestamp对于EF实体的类型是byte[] class Program { static void Main(string[] args) { using (var context = new ...
- [hdu6326]Monster Hunter
考虑树是以1为中心的菊花图的情况,也即如何安排打怪兽的顺序 用二元组$(a,b)$来描述怪兽,则对于两个怪兽$(a_{1},b_{1})$和$(a_{2},b_{2})$,交换两者不会影响血量的变化量 ...