【刷题-PAT】A1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分)
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either
Eulerian
,Semi-Eulerian
, orNon-Eulerian
. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian
分析:注意定义中的path,一个path一定要覆盖所有的节点,也即图要连通
#include<iostream>
#include<cstdio>
#include<vector>
#include<unordered_map>
#include<string>
#include<set>
#include<algorithm>
#include<cmath>
using namespace std;
const int nmax = 510;
int fath[nmax];
void init(){
for(int i = 0; i < nmax; ++i)fath[i] = i;
}
int findF(int x){
int a = x;
while(x != fath[x])x = fath[x];
while(a != fath[a]){
int temp = fath[a];
fath[a] = x;
a = temp;
}
return x;
}
void Union(int a, int b){
int fa = findF(a), fb = findF(b);
if(fa != fb)fath[fa] = fb;
}
bool isRoot[nmax] = {false};
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif
init();
int n, m;
scanf("%d%d", &n, &m);
int deg[n + 1] = {0};
for(int i = 0; i < m; ++i){
int u, v;
scanf("%d%d", &u, &v);
deg[u]++;
deg[v]++;
Union(u, v);
}
for(int i = 1; i <= n; ++i)isRoot[findF(i)] = true;
int cnt = 0;
for(int i = 1; i <= n; ++i)if(isRoot[i])cnt++;
int odd = 0;
for(int i = 1; i <= n; ++i){
printf("%d", deg[i]);
if(i < n)printf(" ");
else printf("\n");
if(deg[i] % 2 == 1)odd++;
}
if(cnt == 1){
if(odd == 0)printf("Eulerian\n");
else if(odd == 2)printf("Semi-Eulerian\n");
else printf("Non-Eulerian\n");
}else{
printf("Non-Eulerian\n");
}
return 0;
}
【刷题-PAT】A1126 Eulerian Path (25 分)的更多相关文章
- PAT A1126 Eulerian Path (25 分)——连通图,入度
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性
题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PTA PAT排名汇总(25 分)
PAT排名汇总(25 分) 计算机程序设计能力考试(Programming Ability Test,简称PAT)旨在通过统一组织的在线考试及自动评测方法客观地评判考生的算法设计与程序设计实现能力,科 ...
- 【刷题-PAT】A1114 Family Property (25 分)
1114 Family Property (25 分) This time, you are supposed to help us collect the data for family-owned ...
- 【刷题-PAT】A1101 Quick Sort (25 分)
1101 Quick Sort (25 分) There is a classical process named partition in the famous quick sort algorit ...
- PAT甲级——A1126 Eulerian Path【30】
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*
1029 Median (25 分) Given an increasing sequence S of N integers, the median is the number at the m ...
- PAT 1126 Eulerian Path[欧拉路][比较]
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
随机推荐
- Django modules模块
http://www.cnblogs.com/wupeiqi/articles/5246483.html
- std::function介绍 -转载
类模版std::function是一种通用.多态的函数封装.std::function的实例可以对任何可以调用的目标实体进行存储.复制.和调用操作,这些目标实体包括普通函数.Lambda表达式.函数指 ...
- VS2010 sp1离线下载地址和在线下载地址
地址是:http://www.msdn1.cn/8/42/ 下载: edk2 + 迅雷, 稳的1P
- 【LeetCode】459. Repeated Substring Pattern 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历子串 日期 [LeetCode] 题目地址:ht ...
- 1686 第K大区间
1686 第K大区间 时间限制:1 秒 空间限制:131072 KB 定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. 众数(统计学/数学名词)_百度百 ...
- A New Defense Against Adversarial Images: Turning a Weakness into a Strength
目录 概 主要内容 准则1 准则2 总策略 Hu S, Yu T, Guo C, et al. A New Defense Against Adversarial Images: Turning a ...
- Java Web程序设计笔记 • 【第4章 JavaBean和JSP标准动作】
全部章节 >>>> 本章目录 4.1 JavaBean 4.1.1 JavaBean 概述 4.1.2 JavaBean的重要性 4.1.3 JavaBean的特点 4.1 ...
- Ranger-Sqoop2插件实现详解
1.组件和插件介绍 1.1.Ranger介绍 Apache Ranger能够监控和管理整个Hadoop平台的综合数据安全, 目前作为Apache Top Level Project(TLP顶级项目), ...
- Git 标签使用详解
列出标签 # 默认按字母排序显示 $ git tag # 模糊匹配查找标签 $ git tag -l "v1.8.5*" 创建标签 # 创建附注标签 $ git tag -a v1 ...
- SpringBoot 中过滤器的简介及使用方式
过滤器简介 过滤器依赖Servlet容器,属于Servlet规范的一部分. 在实现上基于Servlet容器的函数回调,可以对几乎所有请求进行过滤. Filter的生命周期由Servlet容器管理. 过 ...