正题

题目链接:https://www.luogu.com.cn/problem/P4345


题目大意

\(T\)组询问,给出\(n,k\)求

\[\sum_{i=0}^{k}\binom{n}{i}
\]

对\(2333\)取模的值

\(1\leq T\leq 10^5,1\leq k\leq n\leq 10^{18}\)


解题思路

因为模数很小,可以考虑用\(Lucas\)定理,然后考虑怎么优化复杂度。

对于给出的\(n,k\)分成两个部分,第一部分是由\(k\)前面若干段长度为\(P\)的整段构成,这一部分的答案我们发现对于\(C_{\lfloor\frac{n}{P}\rfloor}^{\lfloor\frac{m}{P}\rfloor}\times C^{n\%p}_{m\% p}\)这两个值,后面那一个值的和是确定的,是\(\sum_{i=1}^kC_{n\%p}^k\),前面那一部分的值我们可以递归下去计算。

然后第二部分是剩下的散段,这个部分我们也是自直接递归下去算就可以了

时间复杂度\(O(T\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=2333;
ll n,k,t,S[P][P],C[P][P];
ll Lucas(ll n,ll k){
if(!k)return 1ll;
if(!C[n%P][k%P])return 0;
return Lucas(n/P,k/P)*C[n%P][k%P]%P;
}
ll solve(ll n,ll k){
if(k<0)return 0;
if(n<P)return S[n][min(n,k)];
ll tmp=solve(n/P,k/P-1)*S[n%P][n%P]%P;
tmp=(tmp+solve(n%P,k%P)*Lucas(n/P,k/P)%P)%P;
return tmp;
}
signed main()
{
C[0][0]=S[0][0]=1;
for(ll i=1;i<P;i++)
for(ll j=0;j<=i;j++)
C[i][j]=((j?C[i-1][j-1]:0)+C[i-1][j])%P;
for(ll i=1;i<P;i++){
S[i][0]=C[i][0];
for(ll j=1;j<=i;j++)
(S[i][j]=S[i][j-1]+C[i][j])%=P;
}
scanf("%lld",&t);
while(t--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}

P4345-[SHOI2015]超能粒子炮·改【Lucas定理,类欧】的更多相关文章

  1. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  2. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  3. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  4. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  5. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  6. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  7. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  8. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  9. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

  10. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

随机推荐

  1. C#实现http协议GET、POST请求

    using System; using System.Collections.Generic; using System.Text; using System.Net; using System.Ne ...

  2. 深入浅出Mybatis系列(三)---配置简介(mybatis源码篇)

    上篇文章<深入浅出Mybatis系列(二)---Mybatis入门>写了一个Demo简单体现了一下Mybatis的流程.本次,将简单介绍一下Mybatis的配置文件: 上次例子中,我们以  ...

  3. 关于PLSQL中的一些问题总结:在PLSQL中书写DDL等

    关于问题前导,使用的数据表中涉及到的字段和类型: 在PLSQL中create.drop.truncate等DDL是没有办法直接执行的. 必须要使用: Execute immediate 'DDL语句' ...

  4. java 方法参数的执行顺序

    java方法的参数的执行顺序是从左到右还是从右到左呢? 写出一下测试程序: 1 import java.util.*; 2 import java.io.*; 3 public class Test ...

  5. 微信小程序学习笔记二 数据绑定 + 事件绑定

    微信小程序学习笔记二 1. 小程序特点概述 没有DOM 组件化开发: 具备特定功能效果的代码集合 体积小, 单个压缩包体积不能大于2M, 否则无法上线 小程序的四个重要的文件 *js *.wxml - ...

  6. Linux centos 安装 ftp(Vsftp) 与 设置ftp(Vsftp)

    本文章只是简单搭建,因为公司只须要简单使用,虽然简单但是之前也走了一些弯路,所以决定把过程记录下来. 一.Vsftp安装与卸载 安装:yum install vsftpd 卸载:yum remove ...

  7. Go版本依赖--伪版本

    目录 1.简介 2. 什么是伪版本 3. 伪版本风格 4. 如何获取伪版本 1.简介 在go.mod中通常使用语义化版本来标记依赖,比如v1.2.3.v0.1.5等.因为go.mod文件通常是go命令 ...

  8. 存储系统管理(一)——Linux系统的设备和分区管理

    1.设备名称的理解 /dev/sda1? sata硬盘,a1表示第一块硬盘中的第一个分区 /dev/cdrom 光驱 /dev/mapper/*? 系统中的虚拟设备 2.发现系统中的设备 ? fdis ...

  9. Jenkins 使用PowerShell插件部署Net5项目

    Jenkins安装 PowerShell plugin 插件 新建自由项目 拖到 构建 处,添加 PowerShell 构建 贴入下方脚本即可 # 变量 $ProjectPath = "E: ...

  10. Docker(34)- 如何修改 docker 容器的目录映射

    如果你还想从头学起 Docker,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1870863.html 问题背景 docker run ...