分组密码(五)AES算法② — 密码学复习(八)
在上一篇简单复习了AES的历史时间节点、产生背景、与DES的对比、算法框图(粗略)以及一些数学基础,如果不记得的话点击这里回顾。下面将介绍AES算法的细节。
下面给出AES算法的流程,图片来源:密码算法详解——AES。
通过上图可以知道,AES的加密算法主要可以概括为:
① 一个初始轮密钥加变换
② Nr-1轮的标准轮变换
③ 最后一轮的非标准轮变换
注意:
① 第一步和最后一步都用了轮密钥加,因为没有密钥参与的变换都是容易被攻破的。
② DES的IP和IP-1都没有密钥的参与。
8.1 轮变换 —— 加密轮函数
下面用伪代码的形式对其过程进行介绍。在AES中,除最后一轮外,其它轮次都是运行标准轮函数,最后一轮运行非标准轮函数。
① 标准轮变换
1 Round(State,RoundKey)
2 {
3 ByteSub(State); // S盒变换
4 ShiftRow(State); // 行移位变换
5 MixColumn(State); // 列混合变换
6 AddRoundKey(State,RoundKey); // 轮密钥加变换
7 }
② 最后一轮,非标准轮函数
1 FinalRound(State,RoundKey)
2 {
3 ByteSub(State); // S盒变换
4 ShiftRow(State); // 行移位变换
5 AddRoundKey(State,RoundKey); // 轮密钥加变换
6 }
通过代码可以发现:最后一轮是没有列混合的。
8.1.1 S盒变换 ByteSub(State)
① S盒变换是AES的唯一的非线性变换,是AES安全的关键。
② AES使用16个相同的S盒,DES使用的是8个不同的S盒。
③ AES的S盒有8位输入,8位输出,是一种非线性置换;DES的S盒有6位输入,4位输出,是一种非线性压缩。
S盒变换可分为2步:(1)求逆;(2)代入公式计算。
(1)第一步:
把输入字节用其GF(28)的逆来代替;
把输入字节看成GF(28)上的元素;
求出其在GF(28)上的逆元素;
用该逆元素代替原输入字节。
(2)第二步:
对上面的结果做如下仿射变换:
注意:
- S盒变换的第一步是把字节的值用它的乘法逆来代替,是一种非线性变换。
- 第二步是仿射运算,是线性变换。
- 由于系数矩阵中每列都有5个1,说明改变输入任意一位,输出中5位发生变化。
- 由于系数矩阵中每行都有5个1,说明输出的每一位都与输入的5位相关。
8.1.2 行移位变换 ShiftRow(State)
① 行移位变换对状态的行进行循环移位;
② 第0行不移位,第1行移C1字节,第2行移C2字节,第3行移C3字节。
Nb | C1 | C2 | C3 |
4 | 1 | 2 | 3 |
6 | 1 | 2 | 3 |
③ 行移位属于置换,属于线性变换。本质在于把数据打乱重排,其扩散作用。
8.1.3 列混合变换 MixColumn(State)
① 列混合变换把状态的列视为GF(28)上的多项式a(x)乘以一个固定的多项式c(x),并模x4+1.
b(x) = a(x)c(x) mod x4+1
其中,c(x)= 03x3+01x2+01x+02.
② 列混合变换属于线性变换,起扩散作用。
③ c(x)与x4+1互素,从而保证c(x)存在逆多项式d(x),而c(x)d(x)=1 mod x4+1,只有逆多项式存在,才能进行解密。
写成矩阵的形式:
8.1.4 轮密钥加变换 AddRoundKey(State,RoundKey)
① 把轮密钥与状态进行模2相加
② 轮密钥根据密钥产生算法产生
③ 轮密钥长度等于数据块长度
8.2 轮密钥的产生
① 加密迭代中每一轮需要一个轮密钥参与加密
② 轮密钥根据密钥产生算法通过用户密钥得到
③ 密钥产生分两步进行:
(1)密钥扩展
(2)轮密钥选择
④ 密钥扩展将用户密钥扩展为一个扩展密钥
⑤ 密钥选择从扩展密钥中选出轮密钥
密钥扩展的原理图如下图所示,图片来源:密码算法详解——AES。
8.2.1 密钥扩展
① 密钥扩展产生扩展密钥。
② 用一个字元素的一维数组W[Nb*(Nr+1)]表示扩展密钥。
③ 用户密钥放在该数组最开始的Nk个字中。
④ 其它的字由它前面的字经过处理后得到。
⑤ 分Nk≤6和Nk>6两种密钥扩展算法。
(1)Nk ≤ 6的密钥扩展
① 最前面的Nk个字是由用户密钥填充的
② 之后的每一个字W[j]等于前面的字W[j-1]与Nk个位置之前的字W[j-Nk]的异或
③ 而且对于Nk的整数倍的位置处的字,在异或之前,对W[j-1]进行Rotl变换和ByteSub变换,之后再异或一个常数Rcon.
当j不是Nk的整数倍:Wj=Wj-Nk⊕Wj-1
当j是Nk的整数倍:Wj=Wj-Nk⊕ByteSub(Rotl(Wj-1)⊕Rcon[j/Nk]
说明:
- Rotl是一个字里的字节循环左移函数:
设 W=(A,B,C,D) 则 Rotl(W)=(B,C,D,A)
- 轮常数Rcon与Nk无关,且定义为:
Rcon[i] = (RC[i],'00','00','00')
RC[0] = '01'
RC[i] = xtime(RC[i-1])
(2)Nk > 6的密钥扩展
说明:
Nk>6的密钥扩展 与 Nk≤6的密钥扩展 基本相同,不同之处在于:如果j被Nk除的余数=4,则在异或之前,对W[j-1]进行ByteSub变换。
增加ByteSub变换是因为当Nk>6时密钥很长,仅仅对Nk的整数倍的位置处的字进行ByteSub变换,就显得ByteSub变换的密度比较稀,安全程度不够强。
8.2.2 轮密钥的选择
根据分组大小,依次从扩展密钥中取出轮密钥。
前面的Nb个字作为轮密钥0,接下来的Nb个字作为轮密钥1...
8.3 AES的基本逆变换
AES的加密算法不是对合运算,所以解密算法和加密算法不同。
AES的巧妙之处:虽然解密算法和加密算法不同,但解密算法与加密算法的结构相同。
把加密算法的基本变换换成逆变换,便得到解密算法。
AES的基本变换都是可逆的:
① 轮密钥加的逆就是其本身:(AddRoundKey)-1 = AddRoundKey
② 行移位变换的逆就是状态的后三行分别移位Nb-C1、Nb-C2、Nb-C3个字节。
③ 列混合的逆
状态的每列都乘以c(x)的逆多项式d(x):
d(x) = (c(x))-1 mod x4+1
c(x) = 03x3+01x2+01x+02
d(x) = 0Bx3+0Dx2+09x+0E
④ S盒变换的逆
第一步:首先进行逆仿射变换;
第二步:再把每个字节用其在GF(28)上的逆来代替。
(1)把输入字节看成GF(28)上的元素
(2)求出其在GF(28)上的逆元素
(3)用该逆元素代替原输入字节
注:S盒的逆仿射变换:
⑤ 解密的密钥扩展
解密的密钥扩展与加密的密钥扩展不同,解密的密钥扩展定义如下:
(1) 加密算法的密钥扩展
(2) 把InvMixColumn(逆列混合)应用到除第一和最后一轮外的所有轮密钥上。
⑥ 逆轮变换
(1) 标准拟轮变换
1 Inv_Round(State,RoundKey)
2 {
3 Inv_ByteSub(State); // S盒变换的逆
4 Inv_ShiftRow(State); // 逆行移位变换
5 Inv_MixColumn(State); // 逆列混合变换
6 AddRoundKey(State,RoundKey); // 轮密钥加变换
7 }
(2) 最后一轮,非标准逆轮函数
1 Inv_FinalRound(State,RoundKey)
2 {
3 Inv_ByteSub(State); // S盒变换的逆
4 Inv_ShiftRow(State); // 逆行移位变换
5 AddRoundKey(State,RoundKey); // 轮密钥加变换
6 }
8.4 AES的实现
实现方法:软件、硬件
软件方法:
① 基于算法的描述 —— 效率不够高
② 基于查表 —— 时空折换,提高效率
基于查表:
① S盒,本质上是8进8出,但要S盒和逆S盒2个表。
② 列混合变换
GF(28)的非零元素构成循环群,可通过加法和查表实现乘法。逆列混合同理。
8.5 AES的安全性
能够抵抗目前所有的已知攻击。①穷举攻击 ②差分攻击 ③线性攻击 ④Square攻击 ⑤侧信道攻击
目前已有低于穷举复杂度的攻击方法,但都还不能对AES构成本质的威胁。
8.6 AES的体现
AES体现了香农的密码设计理论。
体现了公开设计的原则。
实践是检验AES密码安全性的唯一标准。
8.7 AES的优点
① 运算速度快
② 对内存的需求非常低,适合于受限环境
③ 分组长度和密钥长度设计灵活
④ AES的密钥长度比DES的密钥长度要长,用穷举法破译较难
⑤ 很好的抵抗差分密码分析和线性密码分析的能力
分组密码(五)AES算法② — 密码学复习(八)的更多相关文章
- 分组密码(四)AES算法① — 密码学复习(七)
介绍完S-PN型结构之后,下面介绍AES算法.由于内容比较多所以将其分为两篇来介绍,本篇主要讲AES的历史时间节点.产生背景.与DES的对比.算法框图(粗略)以及一些数学基础. 7.1 AES的历史时 ...
- 分组密码(三)DES 算法— 密码学复习(六)
在介绍完Feistel结构之后,接下来进入到著名的DES算法. 6.1 DES算法的意义 在正式介绍DES之前,首先介绍几个重要的历史时间节点. ① 1973年,美国国家标准局(NBS)向社会公开征集 ...
- AES算法,DES算法,RSA算法JAVA实现
1 AES算法 1.1 算法描述 1.1.1 设计思想 Rijndael密码的设计力求满足以下3条标准: ① 抵抗所有已知的攻击. ② 在多个平台上速度快,编码紧凑. ③ 设计 ...
- AES算法简介
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...
- #微码分享#AES算法的C++包装类
AES为Advanced Encryption Standard的缩写,中文名:高级加密标准,在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准,用来替代DES.基于std:: ...
- Delphi与JAVA互加解密AES算法
搞了半天终于把这个对应的参数搞上了,话不多说,先干上代码: package com.bss.util; import java.io.UnsupportedEncodingException; imp ...
- 使用python进行加密解密AES算法
使用python进行加密解密AES算法-代码分享-PYTHON开发者社区-pythoner.org 使用python进行加密解密AES算法 TY 发布于 2011-09-26 21:36:53,分类: ...
- C#与Java互通AES算法加密解密
/// <summary>AES加密</summary> /// <param name="text">明文</param> /// ...
- ORACLE 字段AES算法加密、解密
ORACLE 字段AES算法加密.解密(解决中文乱码问题)2014年02月12日 17:13:37 华智互联 阅读数:97971.加解密函数入口 CREATE OR REPLACE FUNCTION ...
随机推荐
- C#基础知识---迭代器与Foreach语句
一.Foreach语句简介 在C# 1.0中我们经常使用foreach来遍历一个集合中的元素,然而如果一个集合要支持使用foreach语句来进行遍历,这个集合一般需要IEnumerable或IEnum ...
- C++继承体系中的内存分段
---------------综述与目录-------------- 讨论这个问题之前我们先明确类的结构,一个类的大概组成,下面的很多分类名词都是我个人杜撰,为的就是让读者看懂能够区分,下面分别分类: ...
- Mybatis中多表联查,查询出来的字段出现重名,造成数据异常的解决方法!
在做一对多出现的问题,引发的思考:当数据库表中,主表的主键id和明细表的中的字段名相同时怎么办?Mybatis进行自动映射赋值的时候会不会出现异常? 注意:M ...
- asp.NetCore3.1系统自带Imemcache缓存-滑动/绝对/文件依赖的缓存使用测试
个人测试环境为:Asp.net coe 3.1 WebApi 1:封装自定义的cacheHelper帮助类,部分代码 1 public static void SetCacheByFile<T& ...
- android kotlin 子线程中调用界面UI组件崩溃
UI 只能在主线程内更新,子线程需要更新UI组件时可以这样: fun fuck(){ Executors.newSingleThreadExecutor().execute{ // url reque ...
- 前端使用a标签启动本地.exe程序
目录 1,需求 2,效果图 3,实现原理 4,代码 5,注意事项 1,需求 最近有一个需求,在web页面上有一个按钮,点击按钮,调起本地的.exe程序客户端,我在网上找了很多,感觉都不完整,所以自己总 ...
- 开源的 Web 框架哪个快?我在 GitHub 找到了答案
在开源这片自由的土地上,孕育了太多开源 Web 框架.我在 GitHub 上搜了一下"web framework"关键字显示有 56000+ 匹配的开源项目,它们百花齐放各有特色, ...
- NOIP模拟38:b
这是T2. 一个容斥(其实也可以欧拉反演做,但是我不会). 首先开一个桶,记录第i行的j有多少个. 然后枚举1-\(maxn\),枚举他的值域内的倍数,记录倍数在第i行有多少个,将个数 ...
- web安全性测试——XSS跨站攻击
1.跨站攻击含义 XSS:(Cross-site scripting)全称"跨站脚本",是注入攻击的一种.其特点是不对服务器端造成任何伤害,而是通过一些正常的站内交互途径,例如发布 ...
- Openswan支持的算法及参数信息:
数据封装加密算法: algorithm ESP encrypt: id=2, name=ESP_DES, ivlen=8, keysizemin=64, keysizemax=64 algorithm ...