正题

题目链接:https://ac.nowcoder.com/acm/contest/11161/E


题目大意

给出\(n\)个数字的一个序列,\(m\)个操作。

  1. 给出\(l,r,k\),求一个最大的\(x\)使得\(\sum_{i=l}^rmax\{a_i-x,0\}\geq k\)
  2. 单点修改

解题思路

带修的比较麻烦,用带修莫队的话需要平衡一下时间复杂度,可以用分块来做。

这样修改是\(O(1)\)的,但是询问的话朴素的想法是二分然后统计,这个\(O(m\sqrt n\log n)\)显然是过不了的。

但是如果改为一个个块从后往前跳确定答案在哪个块,然后在块里枚举就好了。

时间复杂度\(O(mn^{\frac{2}{3}}+m\sqrt n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const ll N=1e5+10;
struct node{
ll l,r,k,id,t;
}q[N];
ll n,m,T,Q,a[N],L[N],R[N],pos[N],p[N],c[N];
ll qnt,mnt,s[N],cnt[N],v[N],ans[N];
bool cmp(node x,node y){
if(x.l/T!=y.l/T)return x.l<y.l;
if(x.r/T!=y.r/T)return x.r<y.r;
return x.t<y.t;
}
void Add(ll x,ll f){
s[pos[x]]+=x*f;
cnt[pos[x]]+=f;
v[x]+=f;return;
}
ll Query(ll k){
if(!k)return 100000;
ll pt,sum=0,ct=0;
for(pt=Q;pt>=1;pt--){
sum+=s[pt];ct+=cnt[pt];
if(sum-ct*R[pt-1]>=k)
{sum-=s[pt];ct-=cnt[pt];break;}
}
if(!pt)return -1;
for(ll i=R[pt];i>=L[pt];i--){
sum+=v[i]*i;ct+=v[i];
if(sum-ct*(i-1)>=k)
return i-1;
}
return -1;
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i]);
T=pow(n*m,1.0/3.0);Q=316;
for(ll i=1;i<=Q;i++)
L[i]=R[i-1]+1,R[i]=i*Q;
++Q;L[Q]=R[Q-1]+1;R[Q]=1e5;
for(ll i=1;i<=Q;i++)
for(ll j=L[i];j<=R[i];j++)pos[j]=i;
for(ll i=1;i<=m;i++){
ll op;scanf("%lld",&op);
if(op==0){
++qnt;q[qnt].id=qnt;q[qnt].t=mnt;
scanf("%lld%lld%lld",&q[qnt].l,&q[qnt].r,&q[qnt].k);
}
else ++mnt,scanf("%lld%lld",&p[mnt],&c[mnt]);
}
sort(q+1,q+1+qnt,cmp);
ll l=1,r=0,t=0;
for(ll i=1;i<=qnt;i++){
while(l<q[i].l)Add(a[l],-1),l++;
while(l>q[i].l)l--,Add(a[l],1);
while(r<q[i].r)r++,Add(a[r],1);
while(r>q[i].r)Add(a[r],-1),r--;
while(t<q[i].t){
t++;
if(l<=p[t]&&p[t]<=r)
Add(a[p[t]],-1),Add(c[t],1);
swap(a[p[t]],c[t]);
}
while(t>q[i].t){
swap(a[p[t]],c[t]);
if(l<=p[t]&&p[t]<=r)
Add(a[p[t]],1),Add(c[t],-1);
t--;
}
ans[q[i].id]=Query(q[i].k);
}
for(ll i=1;i<=qnt;i++)
printf("%lld\n",ans[i]);
return 0;
}

牛客挑战赛48E-速度即转发【带修莫队,分块】的更多相关文章

  1. bzoj4129 Haruna’s Breakfast 树上带修莫队+分块

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4129 题解 考虑没有修改的序列上的版本应该怎么做: 弱化的题目应该是这样的: 给定一个序列,每 ...

  2. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  3. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  4. BZOJ2120 数颜色 莫队 带修莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2120.html 题目传送门 - BZOJ2120 题意 给定一个长度为 $n$ 的序列 $a$ ,有 ...

  5. BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...

  6. UVA 12345 Dynamic len(带修莫队)

    Dynamic len [题目链接]Dynamic len [题目类型]带修莫队 &题解: 莫队可以单点更改,只要再多加一维,代表查询次数,排序的时候3个关键字. 之后循环离线的时候,先暴力时 ...

  7. bzoj 2120 数颜色 (带修莫队)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2120 题意:两种操作:Q 询问区间  l - r  内颜色的种类 ,R 单点修改 思路 ...

  8. BZOJ 4129 Haruna’s Breakfast (分块 + 带修莫队)

    4129: Haruna’s Breakfast Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 835  Solved: 409[Submit][St ...

  9. BZOJ 2120 数颜色 (带修莫队)

    2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit: 6367  Solved: 2537[Submit][Status][Discuss] ...

随机推荐

  1. mysql基础操作(二):简单查询DQL

    -- 1.查询所有字段 select * from student; -- 2.查询指定的字段 select id from student; select id, name from student ...

  2. pgsql基本介绍

    join on 与数学原理 pgsql切换数据库 直接输入 \C youdatabasename 即可 \d 表名 -- 得到表结构 select * from tablename查看表的数据 相信有 ...

  3. springcloud超时重试机制的先后顺序

    https://blog.csdn.net/zzzgd_666/article/details/83314833

  4. IDEA第三方jar包引入的三种方法(专治IDEA2020.1.1的坑)

    一: 二: 三:

  5. C#多线程开发-线程基础 01

    最近由于工作的需要,一直在使用C#的多线程进行开发,其中也遇到了很多问题,但也都解决了.后来发觉自己对于线程的知识和运用不是很熟悉,所以将利用几篇文章来系统性的学习汇总下C#中的多线程开发. 线程基础 ...

  6. Java变量命名规范

    java命名规范 所有方法.变量.类名:见名知意 类成员变量:首字母小写.驼峰原则: 例如:lastName 第一个单词首字母小写,其余首字母大写 局部变量:首字母小写.驼峰原则 类名: 首字母小写. ...

  7. GIMP 一键均匀添加多条参考线 一键均匀切分图片

    添加参考线 #!/usr/bin/env python2 # -*- coding: utf-8 -*- from gimpfu import * # orientation: ORIENTATION ...

  8. 一、部署sqlserver

    1.下载并挂载sqlserver镜像 2.填写秘钥:6GPYM-VHN83-PHDM2-Q9T2R-KBV83 3.默认下一步 4.勾选需要的功能 5.默认下一步 6.默认下一步 等待安装完成即可. ...

  9. Python 高级特性(3)- 列表生成式

    range() 函数 日常工作中,range() 应该非常熟悉了,它可以生成一个迭代对象,然后可以使用 list() 将它转成一个 list # 判断是不是迭代对象 print(isinstance( ...

  10. Linux - centos7.X 安裝 Python 3.7

    说明 全部操作都在 root 用户下执行 安装编译相关工具 yum -y groupinstall "Development tools" yum -y install zlib- ...