普里姆算法(Prim)邻接矩阵法
算法代码
C#代码
using System;
namespace Prim
{
class Program
{
static void Main(string[] args)
{
int numberOfVertexes = 9,
infinity = int.MaxValue;
int[][] graph = new int[][] {
new int[]{0, 10, infinity, infinity, infinity, 11, infinity, infinity, infinity },
new int[]{ 10, 0, 18, infinity, infinity, infinity, 16, infinity, 12 },
new int[]{ infinity, 18, 0, 22, infinity, infinity, infinity, infinity, 8 },
new int[]{ infinity, infinity, 22, 0, 20, infinity, 24, 16, 21 },
new int[]{ infinity, infinity, infinity, 20, 0, 26, infinity, 7, infinity },
new int[]{ 11, infinity, infinity, infinity, 26, 0, 17, infinity, infinity },
new int[]{ infinity, 16, infinity, 24, infinity, 17, 0, 19, infinity },
new int[]{ infinity, infinity, infinity, 16, 7, infinity, 19, 0, infinity },
new int[]{ infinity, 12, 8, 21, infinity, infinity, infinity, infinity, 0 },
};
//Prim(graph, numberOfVertexes);
PrimSimplified(graph, numberOfVertexes);
}
static void Prim(int[][] graph, int numberOfVertexes)
{
bool debug = true;
int[] adjVex = new int[numberOfVertexes], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = new int[numberOfVertexes]; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (int i = 0; i < numberOfVertexes; i++) // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
{
adjVex[i] = 0;
}
for (int i = 0; i < numberOfVertexes; i++) // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
{
lowCost[i] = graph[0][i];
}
int k = 0; // 初始假定权值最小的边的终点的下标为k。
for (int i = 1; i < numberOfVertexes; i++)
{
if (debug)
{
Console.WriteLine($"Loop {i}");
Console.Write("lowCost: ");
PrintArray(lowCost);
Console.Write(" adjVex: ");
PrintArray(adjVex);
Console.WriteLine();
}
int minimumWeight = int.MaxValue; // 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
for (int j = 1; j < numberOfVertexes; j++)
{
if (lowCost[j] != 0 && lowCost[j] < minimumWeight) // lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
if (!debug)
{
Console.WriteLine($"({adjVex[k]}, {k})"); // 输出边
}
adjVex[i] = k; // 此时找到的k值即是权值最小的边的终点。将V[k]放入集合U。(这步可省略,因lowCost[j]已被标为“无需搜索”了)。
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
for (int j = 1; j < numberOfVertexes; j++) // 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
{
if (lowCost[j] != 0 && graph[k][j] < lowCost[j]) // lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
if (debug)
{
Console.Write("lowCost: ");
PrintArray(lowCost);
Console.Write(" adjVex: ");
PrintArray(adjVex);
Console.WriteLine();
}
}
}
static void PrimSimplified(int[][] graph, int numberOfVertexes)
{
int[] adjVex = new int[numberOfVertexes], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = new int[numberOfVertexes]; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (int i = 0; i < numberOfVertexes; i++)
{
adjVex[i] = 0; // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
lowCost[i] = graph[0][i]; // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
}
int k = 0; // 初始假定权值最小的边的终点的下标为k。
for (int i = 1; i < numberOfVertexes; i++)
{
int minimumWeight = int.MaxValue; // 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
for (int j = 1; j < numberOfVertexes; j++)
{
if (lowCost[j] != 0 && lowCost[j] < minimumWeight) // lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
Console.WriteLine($"({adjVex[k]}, {k})"); // 输出边
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
for (int j = 1; j < numberOfVertexes; j++) // 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
{
if (lowCost[j] != 0 && graph[k][j] < lowCost[j]) // lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
}
}
static void PrintArray(int[] array)
{
Console.Write("[ ");
for (int i = 0; i < array.Length - 1; i++) // 输出数组的前面n-1个
{
Console.Write($"{ToInfinity(array[i])}, ");
}
if (array.Length > 0) // 输出数组的最后1个
{
int n = array.Length - 1;
Console.Write($"{ToInfinity(array[n])}");
}
Console.WriteLine(" ]");
}
static string ToInfinity(int i) => i == int.MaxValue ? "∞" : i.ToString();
}
}
TypeScript代码
function prim(graph: number[][], numberOfVertexes: number) {
let debug: boolean = true;
let adjVex: number[] = [], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = []; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (let i = 0; i < numberOfVertexes; i++) // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
{
adjVex[i] = 0;
}
for (let i = 0; i < numberOfVertexes; i++) // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
{
lowCost[i] = graph[0][i];
}
let k: number = 0; // 初始假定权值最小的边的终点的下标为k。
for (let i = 1; i < numberOfVertexes; i++) {
if (debug) {
console.log(`Loop ${i}`);
console.log(`lowCost: ${printArray(lowCost)}`);
console.log(` adjVex: ${printArray(adjVex)}`);
}
// 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
let minimumWeight: number = Number.MAX_VALUE;
for (let j = 1; j < numberOfVertexes; j++) {
// lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
if (lowCost[j] != 0 && lowCost[j] < minimumWeight)
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
if (!debug) {
console.log(`(${adjVex[k]}, ${k})`);// 输出边
}
adjVex[i] = k; // 此时找到的k值即是权值最小的边的终点。将V[k]放入集合U。(这步可省略,因lowCost[j]已被标为“无需搜索”了)。
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
// 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
for (let j = 1; j < numberOfVertexes; j++)
{
// lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
if (lowCost[j] != 0 && graph[k][j] < lowCost[j])
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
if (debug) {
console.log(`lowCost: ${printArray(lowCost)}`);
console.log(` adjVex: ${printArray(adjVex)}`);
console.log('');
}
}
}
function primSimplified(graph: number[][], numberOfVertexes: number) {
let adjVex: number[] = [], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = []; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (let i = 0; i < numberOfVertexes; i++) {
adjVex[i] = 0; // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
lowCost[i] = graph[0][i]; // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
}
let k: number = 0; // 初始假定权值最小的边的终点的下标为k。
for (let i = 1; i < numberOfVertexes; i++) {
// 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
let minimumWeight: number = Number.MAX_VALUE;
for (let j = 1; j < numberOfVertexes; j++) {
// lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
if (lowCost[j] != 0 && lowCost[j] < minimumWeight)
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
console.log(`(${adjVex[k]}, ${k})`); // 输出边
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
// 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
for (let j = 1; j < numberOfVertexes; j++)
{
// lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
if (lowCost[j] != 0 && graph[k][j] < lowCost[j])
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
}
}
function printArray(array: number[]): string {
let str: string[] = [];
str.push("[ ");
for (let i = 0; i < array.length - 1; i++) // 输出数组的前面n-1个
{
str.push(`${toInfinity(array[i])}, `)
}
if (array.length > 0) // 输出数组的最后1个
{
let n: number = array.length - 1;
str.push(`${toInfinity(array[n])}`);
}
str.push(" ]");
return str.join("");
}
function toInfinity(i: number) {
return i == Number.MAX_VALUE ? "∞" : i.toString();
}
function Main() {
let numberOfVertexes: number = 9,
infinity = Number.MAX_VALUE;
let graph: number[][] = [
[0, 10, infinity, infinity, infinity, 11, infinity, infinity, infinity],
[10, 0, 18, infinity, infinity, infinity, 16, infinity, 12],
[infinity, 18, 0, 22, infinity, infinity, infinity, infinity, 8],
[infinity, infinity, 22, 0, 20, infinity, 24, 16, 21],
[infinity, infinity, infinity, 20, 0, 26, infinity, 7, infinity],
[11, infinity, infinity, infinity, 26, 0, 17, infinity, infinity],
[infinity, 16, infinity, 24, infinity, 17, 0, 19, infinity],
[infinity, infinity, infinity, 16, 7, infinity, 19, 0, infinity],
[infinity, 12, 8, 21, infinity, infinity, infinity, infinity, 0],
];
prim(graph, numberOfVertexes);
primSimplified(graph, numberOfVertexes);
}
Main();
参考资料:
《大话数据结构》 - 程杰 著 - 清华大学出版社 第247页
普里姆算法(Prim)邻接矩阵法的更多相关文章
- 最小生成树练习3(普里姆算法Prim)
风萧萧兮易水寒,壮士要去敲代码.本女子开学后再敲了.. poj1258 Agri-Net(最小生成树)水题. #include<cstdio> #include<cstring> ...
- 普里姆算法(Prim)
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权 ...
- 普里姆(Prim)算法
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(即"带权图")里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(V ...
- 查找最小生成树:普里姆算法算法(Prim)算法
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...
- HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- hdu 1233:还是畅通工程(数据结构,图,最小生成树,普里姆(Prim)算法)
还是畅通工程 Time Limit : 4000/2000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submis ...
- 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...
- ACM第四站————最小生成树(普里姆算法)
对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成 ...
- 图->连通性->最小生成树(普里姆算法)
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...
随机推荐
- PTA 二叉树的三种遍历(先序、中序和后序)
6-5 二叉树的三种遍历(先序.中序和后序) (6 分) 本题要求实现给定的二叉树的三种遍历. 函数接口定义: void Preorder(BiTree T); void Inorder(BiTr ...
- c/s应用程序自动更新组件GeneralUpdate3.2.1发布
一.组件简介 GeneralUpdate是基于.net standard 开发的一款(c/s应用)自动升级程序.该组件将更新的核心部分抽离出来方便应用于多种项目当中目前适用于wpf,控制台应用,win ...
- Git基础知识之内部状态管理系统
本文主要来介绍一下 Git 的内部状态管理系统.它利用基于节点和指针的数据结构来跟踪及管理编辑操作的时间线. 对本地项目而言,任一时刻,Git 处于三种状态中的一种:工作区状态.暂存区状态和提交区状态 ...
- Istio 网络弹性 实践 之 故障注入 和 调用重试
网络弹性介绍 网络弹性也称为运维弹性,是指网络在遇到灾难事件时快速恢复和继续运行的能力.灾难事件的范畴很广泛,比如长时间停电.网络设备故障.恶意入侵等. 重试(attempts) Istio 重试机制 ...
- kubernetes:基于ab的压力测试
基于ab的压力测试 # cat apache-test.yaml ################################################################### ...
- 解决删除Azure Active Directory的Enterprise Applications异常
当我们不需要使用某个Azure Active Directory(以下简称AAD)的时候,我们可以删除它,这个时候Azure会对当前的AAD包含的内容进行检查, 在所有的检查项目中有一个名叫" ...
- kubernetes 降本增效标准指南| 资源利用率提升工具大全
背景 公有云的发展为业务的稳定性.可拓展性.便利性带来了极大帮助.这种用租代替买.并且提供完善的技术支持和保障的服务,理应为业务带来降本增效的效果.但实际上业务上云并不意味着成本一定较少,还需适配云上 ...
- Redis解读(2):Redis的Java客户端
Redis的Java客户端 Redis不仅使用命令客户端来操作,而且可以使用程序客户端操作,其实配置和实现起来也非常容易. 现在基本上主流的语言都有客户端支持,比如Java.C.C#.C++.php. ...
- 分库分表之后,id主键如何处理?
(1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...
- irreader网页订阅
flag:立刻阅读,订阅你的全世界 订阅网页.RSS和Podcast,具备急速的阅读体验,高品质.免费.无广告.多平台的阅读器.泛用型Podcast播放器. 下载位置:http://irreader. ...