真是一个三倍经验好题啊。

我们来观察这个题目,首先如果直接整体计算,怕是不太好计算。

首先,我们可以将每个子串都看成一个后缀的的前缀。那我们就可以考虑一个一个后缀来计算了。

为了方便起见,我们选择按照字典序来一次插入每个后缀,然后每次考虑当前后缀会产生的新串和与之前插入的串重复的串(这里之所以可以这么考虑,是因为如果他会对后面的串产生重复的话,那么会在后面那个串加入的时候计算的)

那么我们考虑,一个排名为\(i\)的后缀,插入之后不考虑重复的话,会新增多少个子串呢?

不难发现是\(n-sa[i]+1\)个(注意后缀的位置编号是从前开始,而后缀的贡献是后面的子串个数。

那么重复的该怎么计算呢?

我们发现重复的部分实际是当前这个后缀和之前的后缀的\(lcp\)部分会重复,而且应该是最大的\(lcp\) (如果取小的会算少,直接求sum会算多)。

而有一个比较经典的性质就是,在字典序\(1到i\)中与\(i\)的\(lcp\)长度最长的,一定是\(i-1\),这里有两种理解方式,一个是越远差距越大,另一种是越靠前,取\(min\)的范围越大,\(min\)就会可能越小

那么枚举+计算,记得开\(long \ long\)就三倍经验辣

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
int rk[maxn],sa[maxn];
int wb[maxn];
int tmp[maxn];
char a[maxn];
int n;
int h[maxn],height[maxn];
void getsa()
{
int *x=rk,*y=tmp;
int s=128;
int p=0;
for (int i=1;i<=n;i++) x[i]=a[i],y[i]=i;
for (int i=1;i<=s;i++) wb[i]=0;
for (int i=1;i<=n;i++) wb[x[y[i]]]++;
for (int i=1;i<=s;i++) wb[i]+=wb[i-1];
for (int i=n;i>=1;i--) sa[wb[x[y[i]]]--]=y[i];
for (int j=1;p<n;j<<=1)
{
p=0;
for (int i=n-j+1;i<=n;i++) y[++p]=i;
for (int i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
for (int i=1;i<=s;i++) wb[i]=0;
for (int i=1;i<=n;i++) wb[x[y[i]]]++;
for (int i=1;i<=s;i++) wb[i]+=wb[i-1];
for (int i=n;i>=1;i--) sa[wb[x[y[i]]]--]=y[i];
swap(x,y);
p=1;
x[sa[1]]=1;
for (int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+j]==y[sa[i-1]+j]) ? p : ++p;
s=p;
}
for (int i=1;i<=n;i++) rk[sa[i]]=i;
h[0]=0;
for (int i=1;i<=n;i++)
{
h[i]=max(h[i-1]-1,0);
while(i+h[i]<=n && sa[rk[i]-1]+h[i]<=n && a[i+h[i]]==a[sa[rk[i]-1]+h[i]]) h[i]++;
}
for (int i=1;i<=n;i++) height[i]=h[sa[i]];
}
int t;
void init()
{
memset(wb,0,sizeof(wb));
memset(rk,0,sizeof(rk));
memset(sa,0,sizeof(sa));
memset(tmp,0,sizeof(tmp));
memset(h,0,sizeof(h));
memset(height,0,sizeof(height));
}
int main()
{
//cin>>t;
//while (t--)
//{
n=read();
init();
scanf("%s",a+1);
getsa();
long long ans=0;
for (int i=1;i<=n;i++)
{
ans=ans+(long long)(n-sa[i]+1)-(long long)h[i];//这里可以理解成我们顺着字典序的顺序,加入每个后缀,将子串看成后缀的前缀
// 而每次加入会产生新的n-sa[i]+1个字串,其中重复的就是和之前的子串的某些lcp,而字典序上,在这个串前面,与某个串lcp最长的应该是i-1那个串(这里可以理解成越往前差距越大)
}
cout<<ans<<"\n";
// }
return 0;
}

洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)的更多相关文章

  1. 洛谷P2408 不同字串个数 [后缀数组]

    题目传送门 不同字串个数 题目背景 因为NOI被虐傻了,蒟蒻的YJQ准备来学习一下字符串,于是它碰到了这样一道题: 题目描述 给你一个长为N的字符串,求不同的子串的个数 我们定义两个子串不同,当且仅当 ...

  2. SPOJ 694/705 后缀数组

    思路: 论文题*n Σn-i-ht[i]+1 就是结果 O(n)搞定~ //By SiriusRen #include <cstdio> #include <cstring> ...

  3. 【题解】洛谷P1032 [NOIP2002TG]字串变换(BFS+字符串)

    洛谷P1032:https://www.luogu.org/problemnew/show/P1032 思路 初看题目觉得挺简单的一道题 但是仔细想了一下发现实现代码挺麻烦的 而且2002年的毒瘤输入 ...

  4. 【洛谷】P1032 字串变换

    题目地址:https://www.luogu.org/problemnew/show/P1032 洛谷训练场BFS的训练题呀. “BFS不就是用队列的思想去遍历一切情况嘛.我已经不是小孩子了,我肯定能 ...

  5. 洛谷 P1032 【字串变换】

    感觉这个题用一些常用的stl和string函数会非常简单..(难道就是考这两个的吗? vector<pair<string,string>>pos//用于变化 map<s ...

  6. 洛谷P2336 [SCOI2012]喵星球上的点名(后缀数组+莫队)

    我学AC自动机的时候就看到了这题,想用AC自动机结果被学长码风劝退-- 学后缀数组时又看到了这题--那就写写后缀数组做法吧 结果码风貌似比当年劝退我的学长还毒瘤啊 对所有的模式串+询问串,不同串之间用 ...

  7. 【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并)

    题目: 洛谷4770 UOJ395 分析: 一个很好的SAM应用题-- 一句话题意:给定一个字符串\(S\).每次询问给定字符串\(T\)和两个整数\(l\).\(r\),求\(T\)有多少个本质不同 ...

  8. 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)

    题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...

  9. 【洛谷P3411】字串变换

    题解:普通的 BFS 没什么可说的,字符串处理是这道题的难点,同时需要注意哈希判重. 另外,对于 \(string\) 类来说,学到了一个 push_back((char)) 操作. c++strin ...

随机推荐

  1. Spring笔记(2)

    一.AOP简介 1.概念: 面向切面编程(Aspect-Oriented Programming),可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善. ...

  2. Nginx对代理HTTP资源的限制访问

    为了限制连接的数量,首先,使用指令来定义密钥并设置共享内存区域的参数(工作进程将使用该区域来共享键值的计数器).作为第一个参数,指定作为关键字计算的表达式.在第二个参数区域中,指定区域的名称及其大小. ...

  3. Reinforcement Learning 强化学习入门

    https://www.zhihu.com/question/277325426 https://github.com/jinglescode/reinforcement-learning-tic-t ...

  4. RGB 与 HSB/HSV 的关系

    能理解 RGB 模式中确定数值的各种颜色,但怎么理解「明度」.「饱和度」.「色相」等概念? 从第一张图可以简单得出以下结论: 明度--这个最简单,rgb中,三色光的值,其加起来的和越大,明度就越大. ...

  5. OAuth2-简介

    1. 简介 OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用.因此OAUTH是安全的. ...

  6. Mysql常用基础命令操作

    常见操作命令:1.连接Mysql (客户端工具NaviCat.phpMyAdmin.MySQL-Front)格式: mysql -h 主机地址 -u用户名 -p用户密码(1)连接到本机上的MYSQL. ...

  7. Java中使用DOM4J来生成xml文件和解析xml文件

    一.前言 现在有不少需求,是需要我们解析xml文件中的数据,然后导入到数据库中,当然解析xml文件也有好多种方法,小编觉得还是DOM4J用的最多最广泛也最好理解的吧.小编也是最近需求里遇到了,就来整理 ...

  8. javascript(2)运算符

    ### js运算符 1.运算符 1.typeof 获取当前变量类型 运算符(特殊) 2.= 赋值运算符 3.== 简要比较运算符(忽略变量的类型) 4.=== 标准比较运算符(严格变量的类型.判断是否 ...

  9. Vue Abp vNext获取当前登录用户

    系统默认提供了获取当前用户的api方法 https://localhost:44364/api/identity/my-profile 手工实现方法:abp后台获取当前用户需要在AppService应 ...

  10. Winform EF CodeFist方式连接数据库

    直接生成ado.net 实体数据模型挺方便的,但只有一步步的手写代码才能更好的理解EF,在学习asp.net core过程中手写代码已经明白了怎么回事,但实现过程有些麻烦不知道如何记录,但Winfor ...