题目传送门

Description

作为泉岭精神的缔造者、信奉者、捍卫者、传承者,Pear决定印制一些教义问答手册,以满足泉岭精神日益增多的信徒。Pear收集了一些有关的诗选、语录,其中部分内容摘录在了【题目背景】里。这些语录是按出现的时间排好序的——Pear很喜欢这样的作风,于是决定在按时间排好序的基础上,选择部分语录,制作成若干本教义问答手册。
一共有N条语录。Pear决定从中选出某一段时间内的所有语录,在此基础上印制大小为L的若干本教义问答手册。Pear对印制的手册有如下要求:
1. 每本手册必须包含这个区间内连续的恰好L条语录。
2. 不同手册包含的语录不能相同。
3. 每条语录有一个“主题相关程度”,这个数可正可负。Pear希望所有手册的语录的“主题相关程度”之和尽可能大。
例如,对于区间[3,15]和L=3,一种选择方法是:[4,6]+[9,11]+[12,14]。这三个区间长度都恰好为L,且互不重叠。
Pear并没有决定选哪段时间的语录,因此他有Q次询问。每次询问,给出两个数[l,r]表示候选语录的范围是第l条到第r条。你能回答出每个询问的最大“主题相关程度”之和么?

\(n,q\le 10^5,L\le 50\)

Solution

这个题在有了提示(知道是分治)之后竟然自己做出来了,这里写一发记录一下。

考虑单次询问怎么做,可以想到,我们可以设 \(f_i\) 表示前面 \(i\) 个数产生的最大贡献,那么我们可以得到转移式:

\[f_i=\max(f_{i-1},f_{i-L}+h_i-h_{i-L})
\]

其中 \(h_{0,1,2,3,...,n}\) 是前缀和。答案就是 \(f_r\)。

考虑优化。因为这个题长度是固定的,所以我们就可以考虑整体操作。

假设我们现在在操作 \([l,r]\),那么,我们现在能更新的答案就是左右端点在 \(mid\) 两侧的,其它的可以继续递归下去。

可以想到的是,在中点两侧的询问一定是要么中间不选要么就是中间选一个(跨界的)区间。因为这个区间长度很小,所以我们就可以预处理出 \(f1_{st,i},f2_{st,i}\) 分别表示从前往后(从后往前)起点在 \(st\),到 \(i\) 这一段产生的贡献,然后枚举一下如果中间选了一个区间的话左边选了多少个以及不选的情况。

复杂度就是 \(\Theta(n\log nL)\),但是因为跑不满所以还是很快的。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define int long long
#define MAXN 100005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,q,len,pre[MAXN],ans[MAXN]; struct node{
int ind,qL,qR;
};
typedef vector<node> poly; #define SZ(A) ((int)A.size())
#define MAXL 55
int f1[MAXL][MAXN],f2[MAXL][MAXN]; void doit1 (int l,int r){//从左往右
for (Int st = 0;st <= len;++ st){
int s = l + st;f1[st][s - 1] = 0;
for (Int i = l;i <= r;++ i)
if (i < s) f1[st][i] = 0;
else{
f1[st][i] = f1[st][i - 1];
if (i - len + 1 >= s) f1[st][i] = max (f1[st][i],f1[st][i - len] + pre[i] - pre[i - len]);
}
}
} void doit2 (int l,int r){
for (Int st = 0;st <= len;++ st){
int s = r - st;f2[st][s + 1] = 0;
for (Int i = r;i >= l;-- i)
if (i > s) f2[st][i] = 0;
else{
f2[st][i] = f2[st][i + 1];
if (i + len - 1 <= s) f2[st][i] = max (f2[st][i],f2[st][i + len] + pre[i + len - 1] - pre[i - 1]);
}
}
}
void chkmx (int &a,int b){a = max (a,b);} void cdq (int l,int r,poly S){
if (l > r || !SZ(S)) return ;
int mid = (l + r) >> 1;doit1 (mid,r),doit2 (l,mid);
poly S1,S2;S1.clear (),S2.clear ();
for (Int i = 0;i < SZ(S);++ i){
if (S[i].qL <= mid && S[i].qR >= mid){
chkmx (ans[S[i].ind],f1[1][S[i].qR] + f2[0][S[i].qL]);
for (Int st = 1;st <= len && mid - st + len <= n && mid - st >= 0;++ st)
if (S[i].qR >= mid + st - 1 && S[i].qL <= mid - (len - st + 1) + 1)
chkmx (ans[S[i].ind],f1[st][S[i].qR] + max (0ll,pre[mid + st - 1] - pre[mid - (len - st + 1)]) + f2[len - st + 1][S[i].qL]);
}
else if (S[i].qR <= mid) S1.push_back (S[i]);
else S2.push_back (S[i]);
}
cdq (l,mid,S1),cdq (mid + 1,r,S2);
} signed main(){
read (n,len);
for (Int i = 1,x;i <= n;++ i) read (x),pre[i] = pre[i - 1] + x;
read (q);poly S;for (Int i = 1;i <= q;++ i){
int l,r;read (l,r);
S.push_back (node {i,l,r});
}
cdq (1,n,S);
for (Int i = 1;i <= q;++ i) write (ans[i]),putchar ('\n');
return 0;
}

题解 「BZOJ3636」教义问答手册的更多相关文章

  1. BZOJ3636: 教义问答手册

    Description “汉中沃野如关中,四五百里烟蒙蒙.黄云连天夏麦熟,水稻漠漠吹秋风.”——摘自 黄裳<汉中行>“泉岭精神不朽,汉中诸球永生.”——摘自<泉岭精神创立者语录> ...

  2. BZOJ 3636 教义问答手册 (分治)

    题意 一个整数数列,多次询问某段区间[li,ri][l_i,r_i][li​,ri​]内,选出若干个长度为LLL且不相交的连续段使选出来的数和最大. 分析 首先想朴素的区间DPDPDP 设f[i][j ...

  3. 题解 「HDU6403」卡片游戏

    link Description 桌面上摊开着一些卡牌,这是她平时很爱玩的一个游戏.如今卡牌还在,她却不在我身边.不知不觉,我翻开了卡牌,回忆起了当时一起玩卡牌的那段时间. 每张卡牌的正面与反面都各有 ...

  4. 题解 「SCOI2016」萌萌哒

    link Description 一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高 ...

  5. 题解 「SDOI2017」硬币游戏

    题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强 ...

  6. 题解 「ZJOI2018」历史

    题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...

  7. 题解「BZOJ4310」跳蚤

    题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. ...

  8. 题解 「BZOJ2137」submultiple

    题目传送门 题目大意 给出 \(M,k\) ,求出 \[\sum_{x|M}\sigma(x)^k \] 给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 ...

  9. 题解 「BZOJ2178」圆的面积并

    题目传送门 题目大意 给出 \(n\) 个圆,求它们并的面积大小. \(n\le 10^3\) 思路 如果您不会自适应辛普森法,请戳这里学习 其实我们发现,如果我们设 \(f(x)\) 表示 \(x= ...

随机推荐

  1. centos 搭建jenkins+git+maven

      git+maven+jenkins持续集成搭建 发布人:[李源]  2017-12-08 04:33:37   一.搭建说明 系统:centos 6.5 jdk:1.8.0_144 jenkins ...

  2. 自研 Pulsar Starter:winfun-pulsar-spring-boot-starter

    原文:自研 Pulsar Starter:winfun-pulsar-spring-boot-starter 里程碑 版本 功能点 作者 完成 1.0.0 支持PulsarTemplate发送消息&a ...

  3. java发送短信开发,第三方接口方法

    必备的三个jar包Maven有自己去下: commons-logging commons-logging 1.1 commons-httpclient commons-httpclient 3.1 c ...

  4. DDL和客户端ip监控

    DDL触发器监控脚本部署步骤 以下操作请使用sys用户: --第一步:创建表(此表主要保存ddl触发器产生的信息),可以根据不同的业务,使用相关的监控用户,在此监控用户为c##upctest 从可维护 ...

  5. 安装配置Linux Squid代理服务器

    1.代理服务器的工作机制 代理服务器的工作机制像生活中的代理商,假设自己的机器为A,想获得的数据由服务器B提供,代理服务器为C,那么连接过程是,A需要B的数据,并直接和C连接:C接受到A的数据请求之后 ...

  6. RabbitMQ-初见

    目录 什么是中间件 消息队列协议 AMQP协议 MQTT协议 OpenMessage协议 Kafka协议 消息队列持久化 消息的分发策略 消息队列高可用和高可靠 什么是高可用机制 集群模式1 - Ma ...

  7. Java 字符串格式化和工具类使用

    前言 我们在做项目时候经常需要对字符串进行处理,判断,操作,所以我就总结了一下java 字符串一些常用操作,和推荐比较好用我在自用的工具类,毕竟有轮子我们自己就不用重复去写了,提供开发效率,剩下的时间 ...

  8. Redis的读写分离

    1.概述 随着企业业务的不断扩大,请求的并发量不断增长,Redis可能终会出现无法负载的情况,此时我们就需要想办法去提升Redis的负载能力. 读写分离(主从复制)是一个比较简单的扩展方案,使用多台机 ...

  9. Intel® QAT加速卡之加密、哈希操作流程和示例

    Intel QAT 加密API介绍 文章主要讲述了Intel QAT 加密API接口的说明,以及多种应用场景下的使用方法. 文章目录 Intel QAT 加密API介绍 1. 概述 1.1 会话(se ...

  10. 事务保存点savepoint

    一.